ERASCA-

On a Journey to Erase Cancer

Erasca Corporate Presentation March 2024

Disclaimer: Forward Looking Statements & Market Data

We caution you that this presentation contains forward-looking statements. All statements other than statements of historical facts contained in this presentation, including statements regarding our future results of operations and financial position, business strategy, research and development plans, the anticipated timing (including the timing of initiation and the timing of data readouts), costs, design and conduct of our ongoing and planned preclinical studies and clinical trials for our product candidates, the potential benefits from our current or future arrangements with third parties, the timing and likelihood of success of our plans and objectives, the impact of the deprioritization of certain programs, and future results of anticipated product development efforts, are forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "contemplates," "believes," "estimates," "predicts," "potential" or "continue" or the negative of these terms or other similar expressions. The inclusion of forward-looking statements should not be regarded as a representation by us that any of our plans will be achieved. Actual results may differ from those set forth in this presentation due to the risks and uncertainties inherent in our business, including, without limitation: our approach to the discovery and development of product candidates based on our singular focus on shutting down the RAS/MAPK pathway, a novel and unproven approach; we only have three product candidates in clinical development and all of our other development efforts are in the preclinical or development stage: the analysis of pooled phase 1 and phase 2 naporafenib + trametinib data covers two clinical trials with different designs and inclusion criteria, which cannot be directly compared, and therefore may not be a reliable indicator of efficacy data; due to differences between trial designs and subject characteristics, comparing data across different trials may not be a reliable indicator of data; preliminary results of clinical trials are not necessarily indicative of final results and one or more of the clinical outcomes may materially change as patient enrollment continues, following more comprehensive reviews of the data and more patient data become available, including the risk that an uPR to treatment may not ultimately result in a cPR to treatment after followup evaluations; we have not completed any clinical trials of naporafenib and are reliant on data generated by Novartis in prior clinical trials conducted by it; our planned SEACRAFT trials may not support the registration of naporafenib; our assumptions around which programs may have a higher probability of success may not be accurate, and we may expend our limited resources to pursue a particular product candidate and/or indication and fail to capitalize on product candidates or indications with greater development or commercial potential; potential delays in the commencement, enrollment, and completion of clinical trials and preclinical studies; our dependence on third parties in connection with manufacturing, research, and preclinical and clinical testing; unexpected adverse side effects or inadequate efficacy of our product candidates that may limit their development, regulatory approval, and/or commercialization, or may result in recalls or product liability claims; unfavorable results from preclinical studies or clinical trials; results from preclinical studies or early clinical trials not necessarily being predictive of future results; the inability to realize any benefits from our current licenses, acquisitions, or collaborations, and any future licenses, acquisitions, or collaborations, and our ability to fulfill our obligations under such arrangements; our assumptions around which programs may have a higher probability of success may not be accurate, and we may expend our limited resources to pursue a particular product candidate and/or indication and fail to capitalize on product candidates or indications with greater development or commercial potential; regulatory developments in the United States and foreign countries; later developments with the FDA or European health authorities may be inconsistent with the feedback received to date regarding our development plans and trial designs; fast track designation or orphan drug designation may not lead to a faster development or regulatory review or approval process, and does not increase the likelihood that our product candidates will receive marketing approval; our ability to fund our operating plans with our current cash, cash equivalents, and marketable securities into the second half of 2026; and other risks described in our prior filings with the Securities and Exchange Commission (SEC), including under the heading "Risk Factors" in our annual report on Form 10-K for the year ended December 31, 2023, and any subsequent filings with the SEC. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof, and we undertake no obligation to update such statements to reflect events that occur or circumstances that exist after the date hereof. All forward-looking statements are gualified in their entirety by this cautionary statement, which is made under the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and growth and other data about our industry. This data involves a number of assumptions, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions, and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk. These and other factors could cause results to differ materially from those expressed in the estimates made by the independent parties and by us.

Vision to one day erase cancer¹ in at least 100,000 patients annually as a leading global oncology company

Experienced leadership team and SAB with track record of serial successes
Founded by Jonathan Lim, MD & Kevan Shokat, PhD around disruptive idea to target RAS
World class scientific advisory board of leading pioneers in RAS/MAPK pathway
Team with deep experience in efficient planning and execution of global clinical trials

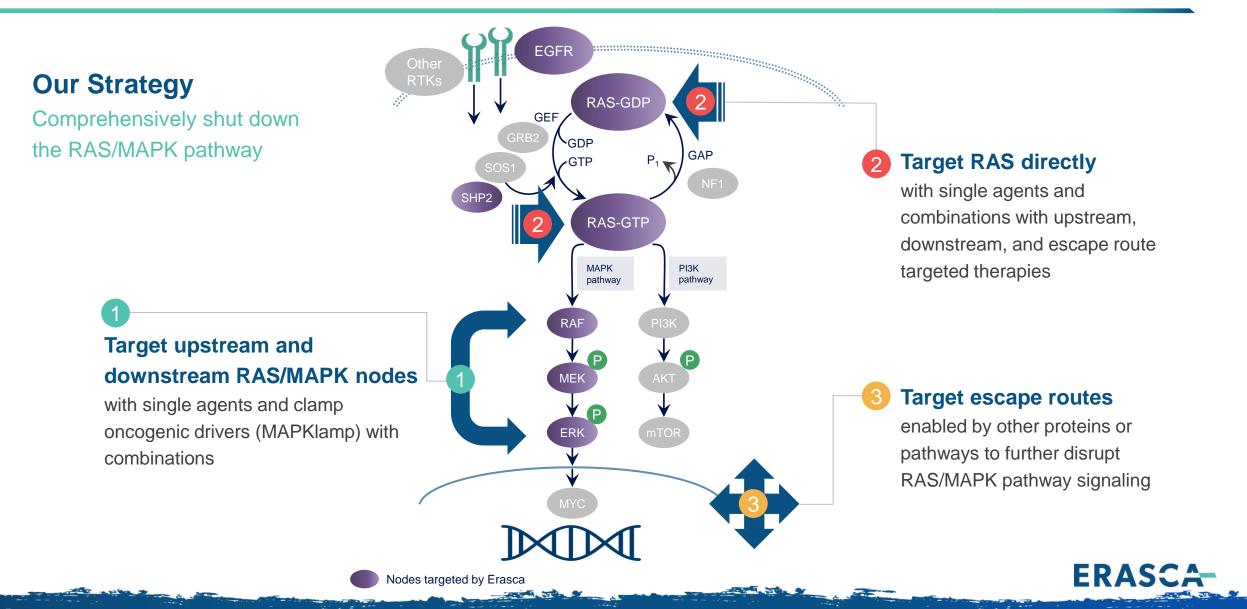
Industry leading portfolio focused on shutting down the RAS/MAPK pathway

- Naporafenib pan-RAFi with first-in-class (FIC) potential and Fast Track Designation for NRASm melanoma & FIC potential in RAS Q61X solid tumors
- ERAS-007 ERKi with best-in-class potential for BRAFm CRC
- ERAS-801, CNS-penetrant EGFRi with FIC potential for EGFR-driven rGBM

Strong financial position with high quality investor base and industry visibility
 \$322M in cash, cash equivalents, and marketable securities², plus \$45M oversubscribed equity financing announced on 3/27/2024; anticipated cash runway into H2 2026

• One of Fierce Biotech's 2021 "Fierce 15" most promising biotechnology companies

¹ Number of patients alive and free of cancer or free from cancer progression 2 yrs after starting an Erasca regimen, as measured by disease-free survival (adjuvant setting) and progression-free survival (metastatic setting) ² Audited, as of December 31, 2023

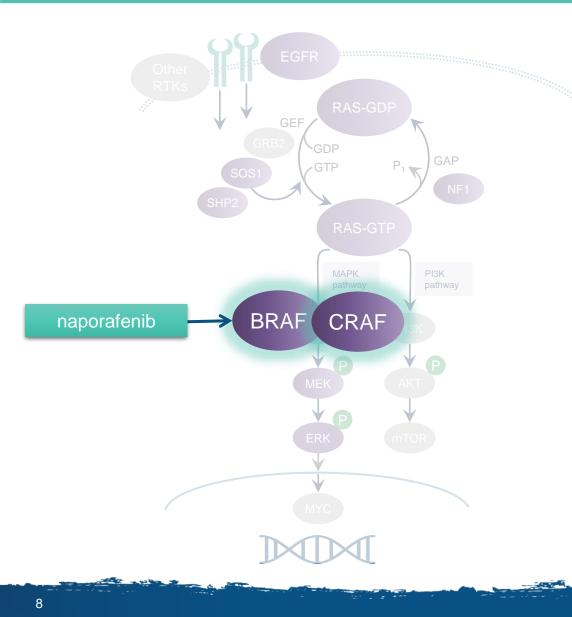

CNS = central nervous system

ERASCA

SAB includes world's leading experts in the RAS/MAPK pathway

Our singular focus is on the RAS/MAPK pathway

					IND-enabling	Phase 1	Phase 2	Phase 3	Rights
Nanarafanih DD			Pan-RAS Q61X tissue agnostic	SEAC <u>RAF</u> T-1					ERASCA
Naporafenib BR	BRAF/CRAF	60	NRASm melanoma	SEAC <u>RAF</u> T-2	(planned)				ERASCA
ERAS-007 ER	RK1/2	8	BRAF V600E CRC	H <u>ERK</u> ULES-3					ERASCA
ERAS-801 EG	GFR	<u>99</u>	EGFR-altered GBM	THUND <u>ERBB</u> OLT-1					ERASCA
ERAS-4 Pa	an-KRAS		KRASm solid tumors						ERASCA
ERAS-12 EG	GFR D2/D3		EGFR & RAS/MAPK altered tumors						ERASCA
Affini-T KR	RAS G12V/D		KRASm solid tumors						affini 🚺


ERA

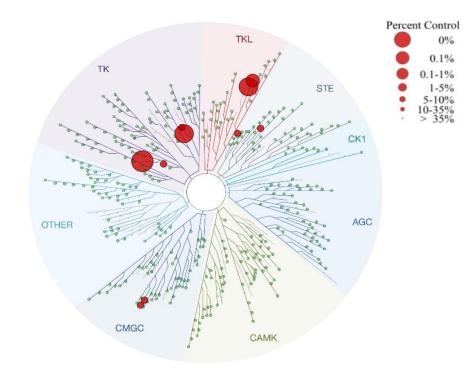
Erasca's clinical development plan generates multiple ways to win for patients

CTCSA: clinical trial collaboration and supply agreement ORR: overall response rate; DOR: duration of response; GBM: glioblastoma

 \mathbf{Q}

Erasca's naporafenib pan-RAFi could address unmet needs in patients with both NRASm melanoma and RAS Q61X solid tumors

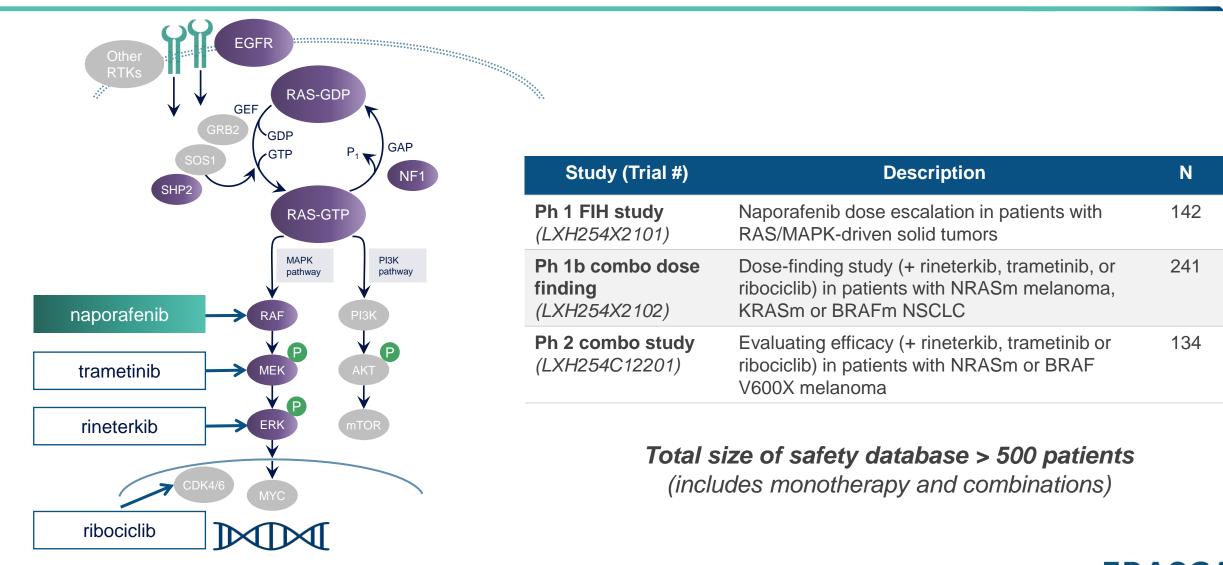
- Potently inhibits CRAF and BRAF and blocks downstream RAS/MAPK pathway signaling
- **Synergizes with trametinib** which targets MEK, the immediate downstream node of RAF
- Selectivity for BRAF and CRAF over ARAF is predicted to enable a **better therapeutic window**
- Does not result in paradoxical BRAF activation, a resistance mechanism observed with BRAF V600E inhibitors



Naporafenib is a potent and selective inhibitor of BRAF and CRAF with subnanomolar IC50 potency and most advanced pan-RAFi in development

Biochemical activity of naporafenib against RAF kinase family

Assay	Value (nM)
Biochemical CRAF IC50 (IC ₅₀)	0.1
Biochemical BRAF IC50 (IC ₅₀)	0.2
Biochemical ARAF Inhibition (IC ₅₀)	6.4


Biochemical activity of naporafenib across 456 kinases (KINOMEscan)

Source: Monaco K-A, Delach S, et al. LXH254, a Potent and Selective ARAF-Sparing Inhibitor of BRAF and CRAF for the Treatment of MAPK-Driven Tumors. 2021. PMID: 33355204; Ramurthy S, Taft BR, et al. Design and Discovery of N-(3-(2-(2-Hydroxyethoxy)-6-Morpholinopyridin-4-YI)-4-Methylphenyl)-2-(trifluoromethyl)isonicotinamide, a Selective, Efficacious, and Well-Tolerated RAF Inhibitor Targeting RAS Mutant Cancers: The Path to the Clinic. 2020. PMID: 31059256

Naporafenib has been dosed in more than 500 patients to date, establishing its safety, tolerability, and preliminary PoC in multiple indications

Source: Novartis Non-Confidential Materials; PoC = proof-of concept

Two-pronged naporafenib development approach addresses high unmet needs and multiple ways to benefit patients with RAS/MAPK-driven tumors

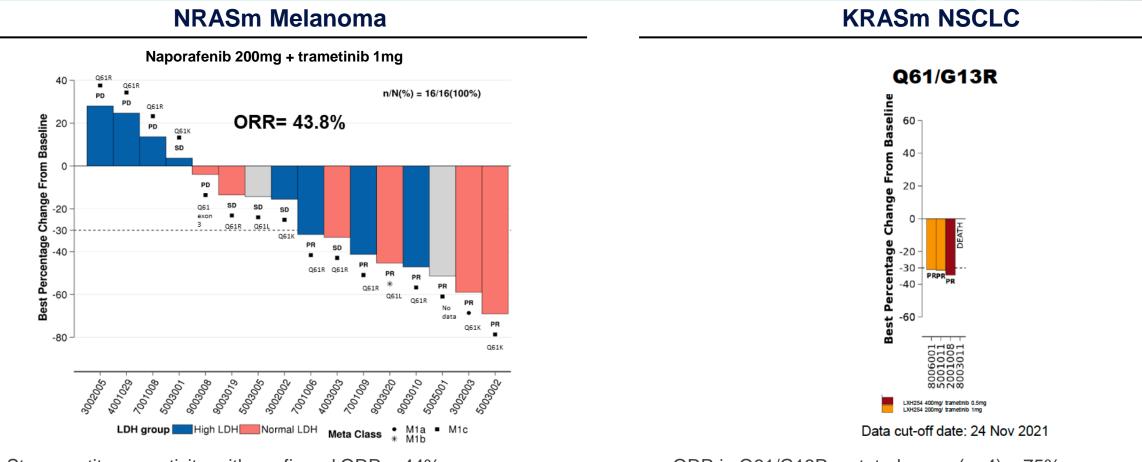
SEACRAFT-1: RAS Q61X Solid Tumors

- High unmet need and potential for tissue agnostic approach
- Phase 1b data for naporafenib + trametinib planned in Q2-Q4 2024


SEACRAFT-2: NRASm Melanoma

- Potential for full approval based on high unmet need and alignment on regulatory path
- Compelling Ph 1 and 2 POC data generated
- Phase 3 of naporafenib + trametinib planned to initiate in H1 2024

NRASm = NRAS mutated; POC = proof-of-concept


SEAC<u>RAF</u>T-1: Naporafenib + trametinib has the potential to provide therapeutic benefit to patients with RAS Q61X solid tumors

1 Dorard C, et al. RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma. Nat Comm, 2017. PMID: 28497782. 2 Lilly Product Website: https://www.retevmo.com

Preliminary clinical PoC in NRAS Q61X melanoma and KRAS Q61X NSCLC supports development in RAS Q61X tissue agnostic solid tumors (SEACRAFT-1)

- Strong antitumor activity, with confirmed ORR = 44%
- 15 out of 16 patients had confirmed codon Q61X melanoma (1 patient had no data)

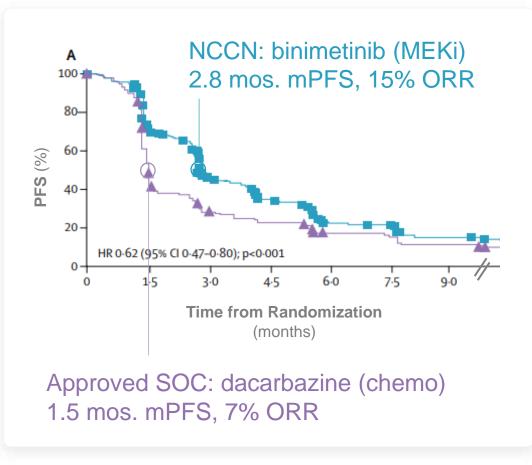
Source: LXH254X2102 Ph 1b combination data from Novartis Non-Confidential Materials PoC = proof-of-concept; ORR: overall response rate

- ORR in Q61/G13R mutated group (n=4) = 75%
- Confirmed/unconfirmed RECIST responses shown

SEAC<u>RAF</u>T-2: Naporafenib + trametinib has the potential to be first-in-class targeted treatment for NRASm melanoma

Standard-of-Care

NRAS mutation related to aggressive disease traits No targeted therapy approved for NRASm melanoma Current treatment options post-IO are dismal (see figure)

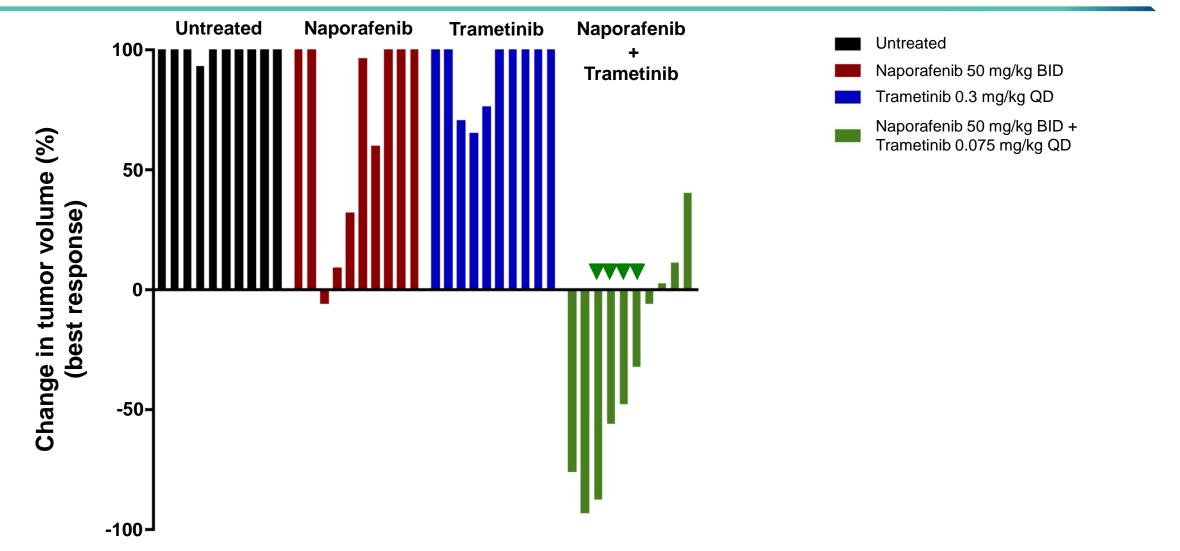

Naporafenib (pan-RAFi)

Successfully completed US, EU and UK EOP2 process for Phase 3 design

Napo + tram demonstrated compelling efficacy across Phase 1 and 2 studies (mPFS ~5 months)

FDA Fast Track Designation

Potential to be first-to-market in NRASm melanoma

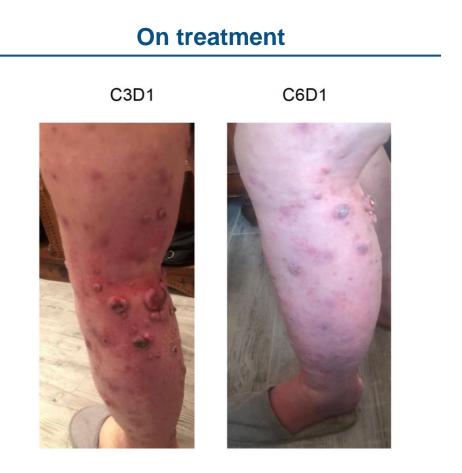

Adapted from Dummer et al. (Lancet Oncol (2017) 18:435-445) Note: Benchmarks are most relevant for SC-2 mPFS, although study was conducted in a 1/2L setting

1 SEER Database (US) and ECIS Database (EU); AACR Genie

IO: immuno-oncology treatment; ORR: overall response rate; mPFS: median progression free survival; NCCN: National Comprehensive Cancer Network; SOC: standard of care; EOP2: end-of-Phase 2

In vivo efficacy of naporafenib and trametinib administered across 10 NRASm melanoma PDX models shows strong synergy of combination vs. either monotherapy

PDX = patient derived xenograft; mg = milligram; kg = kilogram; BID = twice a day; QD = once daily Arrowheads represent models that were treated with a reduced dose of trametinib of 0.0375 mg/kg QD



NRASm melanoma case study: partial response with naporafenib + trametinib

C1D1

Pre-treatment

Source: Novartis Non-Confidential Materials

Compelling, reproducible clinical efficacy across studies and doses shows potential to win on both SEACRAFT-2 primary endpoints (1/2)

	MI	EKi	SOC	Pooled Ph 1 and Ph 2 ⁴			
	Binimetinib ¹ Trametinib ²		Chemo ³	Naporafenib + Trametinib			
	45mg	2mg	1g/m² IV	200mg+1mg	400mg+0.5mg		
	N=269	N=33	N=133	N=39	N=32		
ORR n (%)	41 (15%)	5 (15%)	9 (7%)	12 (31%)	7 (22%)		
DCR n (%)	157 (58%)	N/A	33 (25%)	28 (72%)	21 (66%)		
mDOR months	6.9	~6.9*	NE	7.4	10.2		
mPFS months	2.8	~2.8*	1.5	5.1	4.9		

*Assumes trametinib efficacy is similar to published binimetinib efficacy results

1 Dummer et al 2017; binimetinib is administered BID

2 Pooled analysis from the following publications: Falchook et al, 2012; Pigne et al, 2023; Salzmann et al, 2022; trametinib is administered QD

SOC: standard of care; N/A: not available; NE: not estimable; DCO: data cutoff; DCR: disease control rate; mDOR: median duration of response; ORR: objective response rate; mPFS: median progression free survival The pooled phase 1 and phase 2 napo + tram data covers two clinical trials with different designs and inclusion criteria, which cannot be directly compared, and therefore may not be a reliable indicator of efficacy data Due to differences between trial designs and subject characteristics, comparing data across different trials may not be a reliable indicator of data

US FDA Fast Track Designation: Dec 2023

- Compelling efficacy for both doses evaluated to date
- High unmet medical need for NRASm melanoma patients post-IO

PFS for napo + tram across doses exceeds PFS for approved SOC and single agent MEKi's

³ Dacarbazine is the approved chemotherapy in this indication

⁴ Ph 1 = CLXH254X2102 with DCO 4 Aug 2022; Ph 2 = CLXH254C12201 with DCO 30 Dec 2022

PFS includes both responders and non-responders

PFS is an important metric, but OS is widely considered the gold standard in oncology trials

"

- Represents length of time patient is living after start of therapy
- Reliable and precise measure of efficacy among clinical trial endpoints
- Provides evidence of a drug's value in prolonging a cancer patient's life

"OS is the ultimate endpoint, ... (after that) preventing the disease from progressing, is my second most important metric. "

- Medical Oncologist, Academic Hospital

ERASCA

PFS: progression-free survival; OS: overall survival

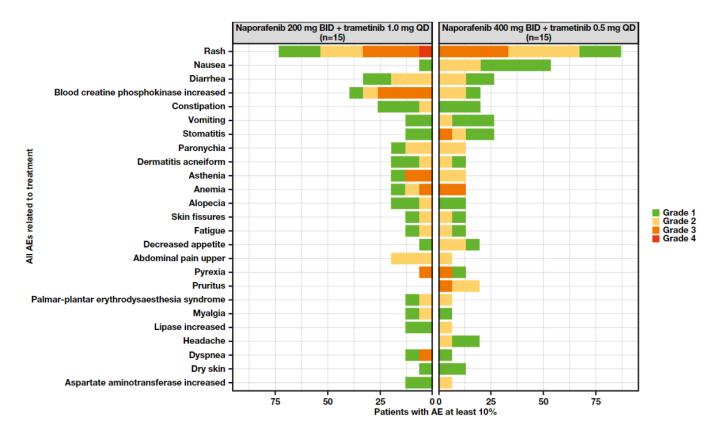
Compelling, reproducible clinical efficacy across studies and doses shows potential to win on both SEACRAFT-2 primary endpoints (2/2)

		MI	EKi	SOC	Pooled Ph	1 and Ph 2 ⁴	
		Binimetinib ¹	¹ Trametinib ² Chemo ³		Naporafenib + Trametinib		
		45mg	2mg	1g/m² IV	200mg+1mg	400mg+0.5mg	
		N=269	N=33	N=133	N=39	N=32	
	mPFS months	2.8	~2.8*	1.5	5.1	4.9	
Benchmarks most	mOS months		~10-11 months Benchmark #1: NEMO Stu ~7 months Benchmark #2: Chart Revi	ıdy)	~13 months	~14 months	
like SEACRAFT-2 patient population			~7 months mark #3: C12201 BRAFm				

1 Dummer et al 2017; binimetinib is administered BID

2 Pooled analysis from the following publications: Falchook et al, 2012; Pigne et al, 2023; Salzmann et al, 2022; trametinib is administered QD

3 Dacarbazine is the approved chemotherapy in this indication

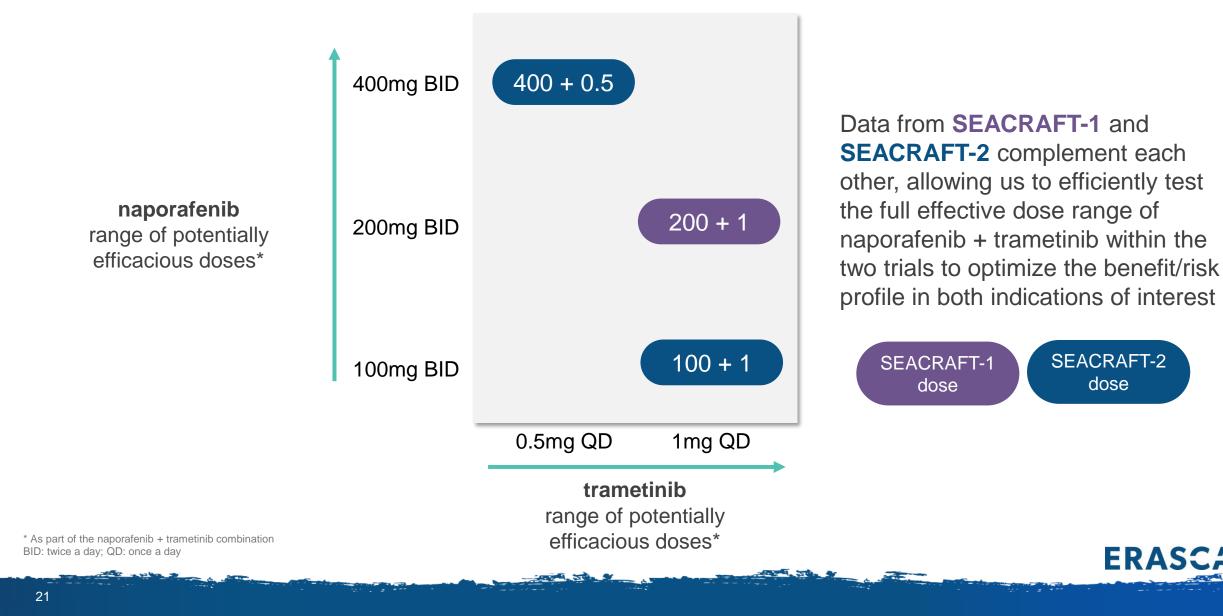

4 Ph 1 = CLXH254X2102 with DCO 4 Aug 2022; Ph 2 = CLXH254C12201 with DCO 30 Dec 2022

5 BRAF/MEK inhibitor-resistant BRAFm melanoma patients in Novartis's Phase 2 trial

SOC: standard of care; mPFS: median progression free survival; mOS: median overall survival

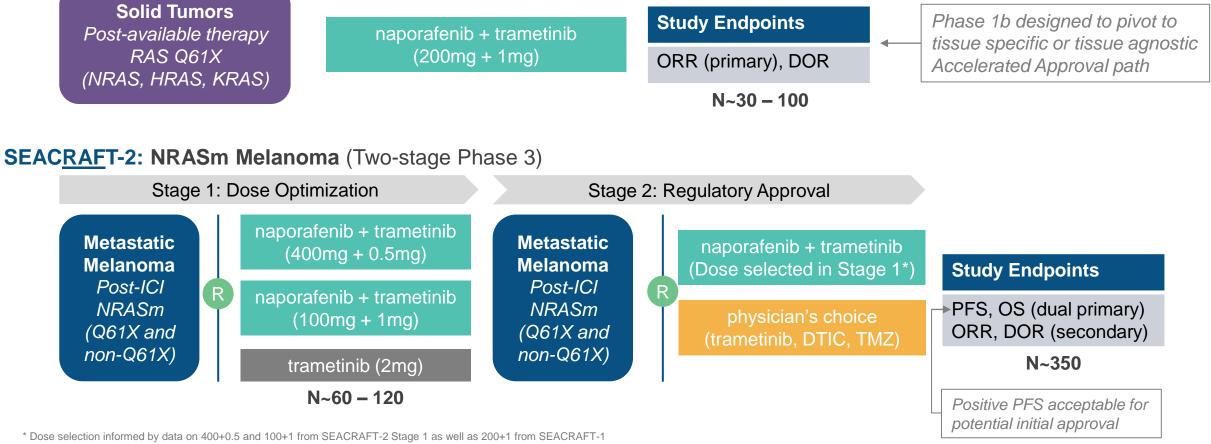
The pooled phase 1 and phase 2 napo + tram data covers two clinical trials with different designs and inclusion criteria, which cannot be directly compared, and therefore may not be a reliable indicator of efficacy data Due to differences between trial designs and subject characteristics, comparing data across different trials may not be a reliable indicator of data

Naporafenib + trametinib demonstrated a favorable, manageable AE profile


Treatment-related adverse events, in ≥10% patients

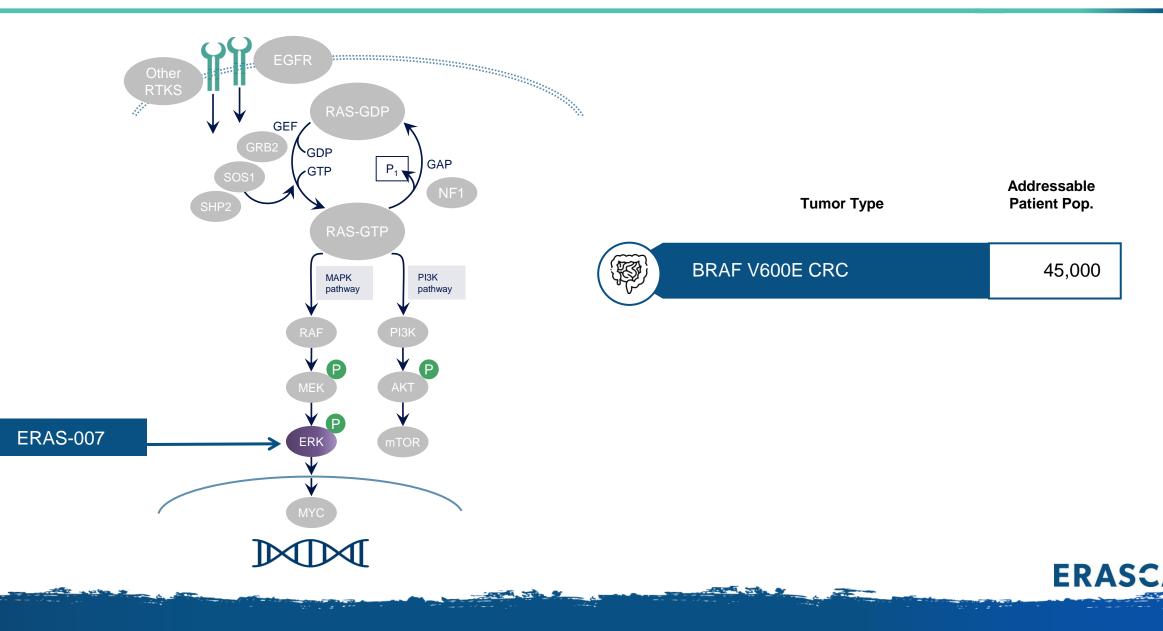
- AE profile consistent with expected toxicities associated with RAF and MEK inhibition
 - 400+0.5 dose safe and tolerable
 - 200+1 dose safe but less tolerable without mandatory primary rash prophylaxis
- Primary prophylaxis of rash being implemented in both SC-1 and SC-2 provides opportunity to further improve safety and tolerability

AE: adverse event; BID: twice daily; QD: once daily; SC: SEACRAFT Phase 1 data in NRASm melanoma from De Braud et al AACR 2022


Dose optimization designed to enhance combination benefit/risk profile to increase probability of regulatory success in light of Project Optimus

dose

Pivotal Phase 3 and Phase 1b trial designs capitalize on promising efficacy signals and potentially support successful registration in multiple indications


SEACRAFT-1: RAS Q61X Solid Tumors (Single-arm Phase 1b)

Note: Naporafenib dosed on a BID schedule; trametinib dosed on a QD schedule; crossover not allowed for SEACRAFT-2

ORR: overall response rate; DOR: duration of response; ICI: immune-checkpoint inhibitor; DTIC: dacarbazine; TMZ; temozolomide; PFS: progression-free survival; OS: overall survival

ERAS-007 ERKi could address unmet needs in ~45k patients annually in the US and Europe

We believe ERAS-007 is the most potent ERK inhibitor in development, with a uniquely longer target residence time

ERAS-007 was designed to be a potent, selective, reversible, oral inhibitor of ERK1/2

Assay Type	Assay	ERAS-007 IC50 (nM)
Dischamical	ERK1	2
Biochemical	ERK2	2
Cell-based mechanistic (HT-29)	pRSK	7

ERAS-007 had longer target residence time vs. other ERKi's, which may allow for longer intervals between doses in patients

Compound	k _{off} (s⁻¹)	Residence Time (min)
ERAS-007	0.30 x 10 ⁻⁴	550
Ulixertinib	10.1 x 10 ⁻⁴	16
Ravoxertinib	13.9 x 10 ⁻⁴	12

H<u>ERK</u>ULES-3: ERAS-007 + EC is a potential best-in-class treatment for patients with BRAF V600E CRC

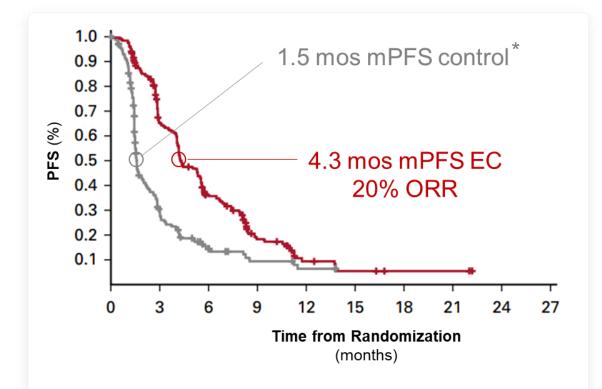
Incidence

~45,000 patients¹ diagnosed with BRAF V600E CRC in the US and Europe annually

Standard-of-Care

Encorafenib + cetuximab (EC) has improved SOC for patients but prognosis is still poor

Durability is largely limited by treatment resistance

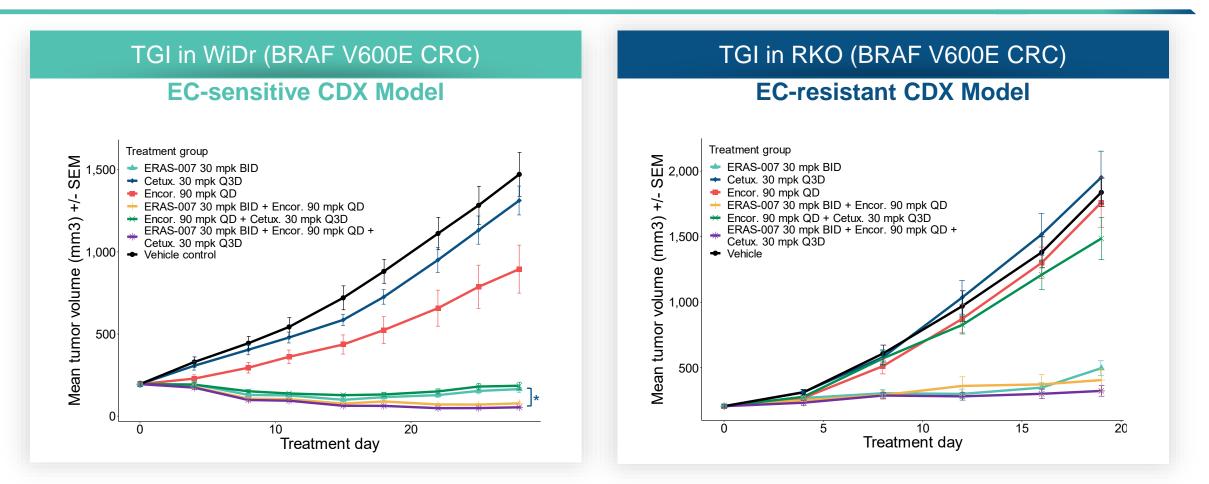

Triplet of binimetinib (MEKi) + EC only marginally improved clinical efficacy

ERAS-007 (ERKi)

Inhibiting the terminal RAS/MAPK pathway node has potential to shut down oncogenic signaling and prevent reactivation

Early signals of clinical efficacy in EC-naïve BRAFm CRC

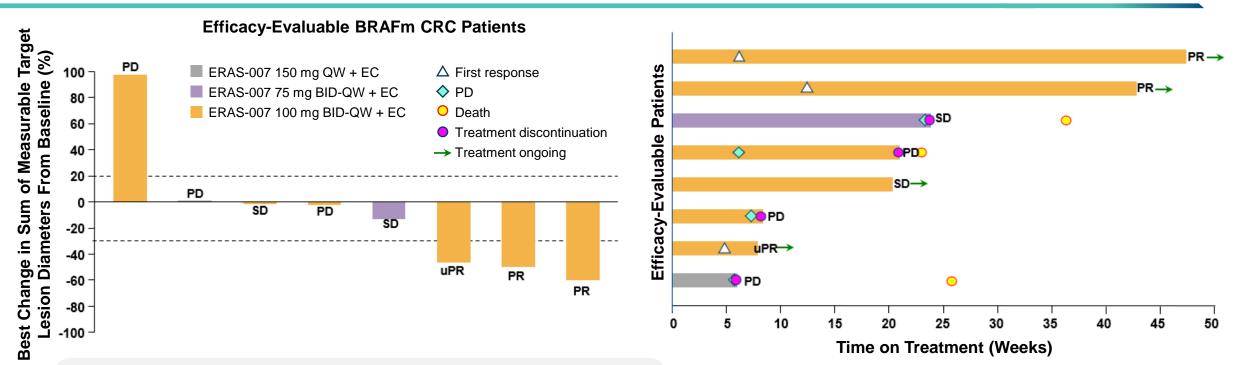
Clinical data reinforce ability to safely combine ERAS-007 with multiple agents


Adapted from Tabanero et al. (JCO (2021) 4: 273-284) *Control arm: investigators' choice of either cetuximab + irinotecan or cetuximab + FOLFIRI

¹ SEER Database (US) and ECIS Database (EU); AACR Genie ORR: overall response rate; mPFS: median progression free survival

ERAS-007 + EC in BRAFm CRC:

Robust in vivo combination activity in BRAF V600E CRC


- ERAS-007 60 mpk QD dose showed similar activity to 30 mpk BID, either as a mono or combo Tx with encor. +/- cetux.
- ERAS-007 combinations were generally well tolerated across the tested models as demonstrated by the minimal percentage body weight changes observed.

*p-value < 0.01

TGI = tumor growth inhibition; Cetux. = cetuximab; Encor. = encorafenib; EC = encorafenib plus cetuximab (BEACON regimen); mpk = milligrams per kilogram; BID = twice a day; Q3D = once every 3 days; QD = once daily

Meaningful activity in EC-naïve BRAFm CRC supports initial focus on and dose expansion of this patient segment

In EC-naïve BRAFm CRC patients at the highest dose tested (100 mg BID-QW):

- 50% (3/6) response rate (2 confirmed PR, 1 uPR¹)
- 67% (4/6) disease control rate²
- Both confirmed responders were still on treatment as of the data cutoff date with duration of exposure >40 weeks
 - BEACON mDOE 19 weeks³

In EC-naïve BRAFm CRC patients across all dose levels:

- 38% (3/8) response rate
- 63% (5/8) disease control rate

Data cutoff as of 21MAY2023

Response on the bar represents the best overall response based on investigator assessments.

1 Per site communication, the patient with uPR was still in response at the subsequent scan (26MAY2023), which was conducted 25 days after the first post-baseline scan

2 Disease control rate (DCR) = CR + PR + SD; uPR is included

3 Median duration of exposure (mDOE) as reported in Kopetz et al. NEJM 2019

EC: encorafenib + cetuximab; PD: progressive disease; CR: complete response; PR: confirmed partial response; uPR: unconfirmed partial response; SD: stable disease; mDOE: median duration of exposure

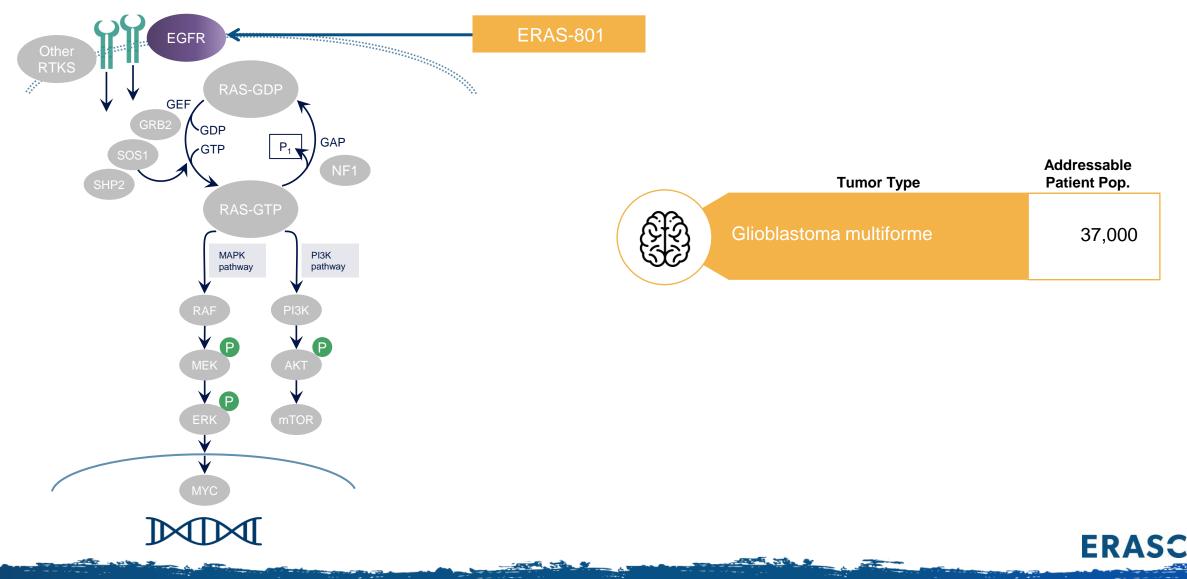
ERAS-007 QW: ERAS-007 oral once a week / ERAS-007 BID-QW: ERAS-007 oral twice a day on a single day each week

ERAS-007 + EC was generally well tolerated with primarily Grade 1 or 2 TRAEs observed

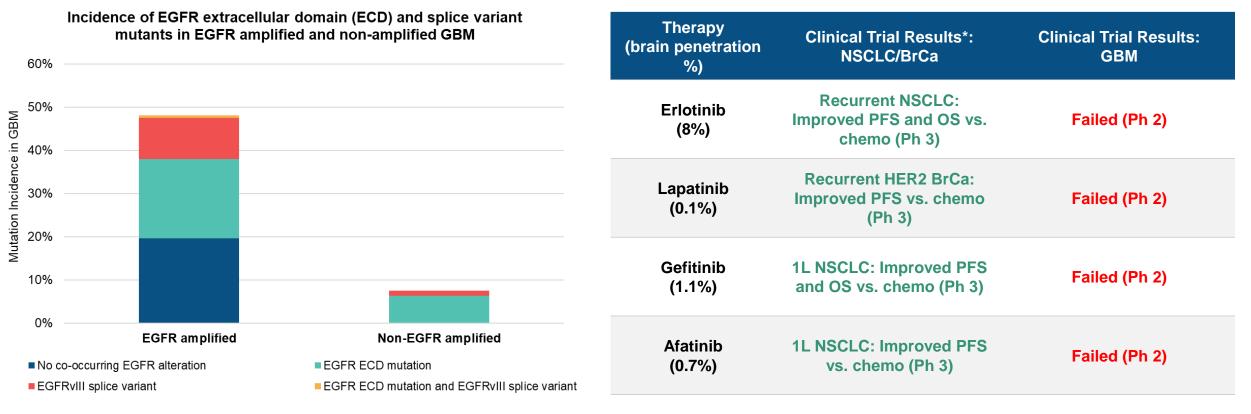
Treatment-related* Adverse Events Reported in ≥ 20% of All Patients

(arranged by descending frequency in the ALL Any Grade column)

		g QW ^b = 2)	75 mg BID-QW ^c (n = 6)		100 mg BID-QW ^c (n = 12)		ALL (n = 20)	
Preferred Term	Any Grade n (%)	Grade ≥ 3 n (%)	Any Grade n (%)	Grade ≥ 3 n (%)	Any Grade n (%)	Grade ≥ 3 n (%)	Any Grade n (%)	Grade ≥ 3 n (%)
Fatigue	1 (50)	1 (50)	3 (50)	0	3 (25)	0	7 (35)	1 (5)
Diarrhea	0	0	2 (33)	0	4 (33)	0	6 (30)	0
Headache	0	0	3 (50)	0	3 (25)	1 (8)	6 (30)	1 (5)
Anaemia	1 (50)	0	2 (33)	1 (17)	2 (17)	1 (8)	5 (25)	2 (10)
Nausea	0	0	3 (50)	0	2 (17)	0	5 (25)	0
Subretinal fluid	0	0	1 (17)	0	3 (25)	0	4 (20)	0
Vomiting	1 (50)	0	2 (33)	0	1 (8)	0	4 (20)	0


No Grade 4 or 5 TRAEs were observed

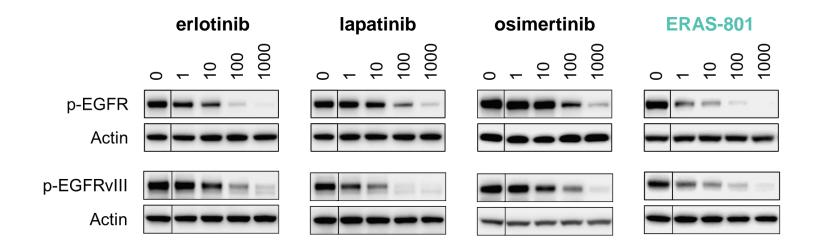
 ERAS-007 100 mg BID-QW dose is being expanded in combination with approved doses of EC to assess signals of efficacy in patients with EC-naïve BRAF V600E mCRC


Data cutoff 23MAR2023 / * Related to ERAS-007

^aEC: encorafenib 300 mg oral daily + cetuximab 500 mg/m² intravenous infusion once every 2 weeks ^bERAS-007 QW: ERAS-007 oral once a week. ^cERAS-007 BID-QW: ERAS-007 oral twice a day on a single day each week

ERAS-801 EGFRi could address high unmet need in 37k patients in US and EU

Poor activity of legacy EGFRi in GBM due to minimal activity against GBMspecific EGFR alterations and poor CNS penetration

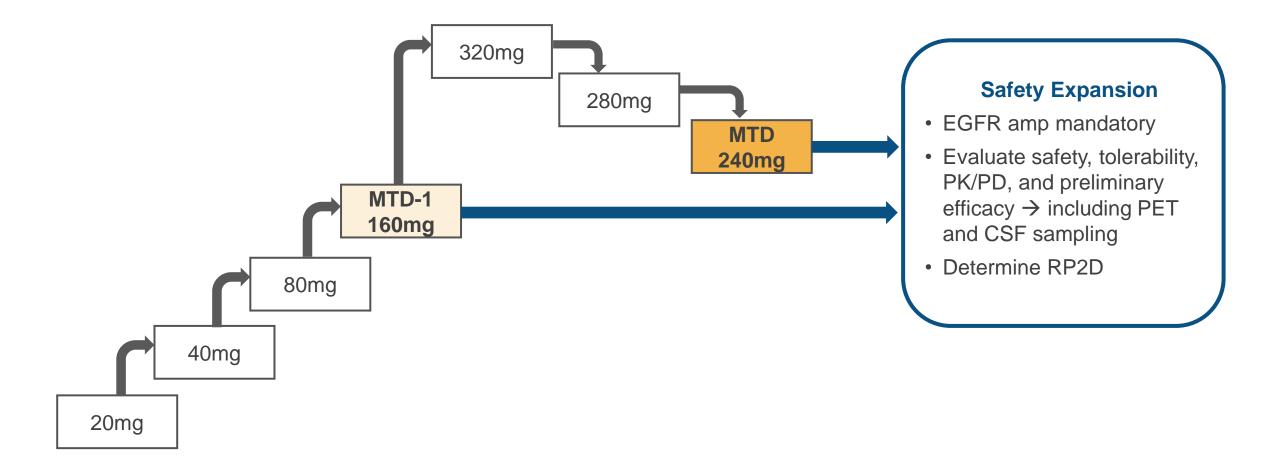


*For illustrative purposes only and not a head-to-head comparison. Differences exist between trial designs and subject characteristics and caution should be exercised when comparing data across studies.

TCGA Cell, 2013 GBM: glioblastoma; CNS: central nervous system; PFS: progression free survival; OS: overall survival

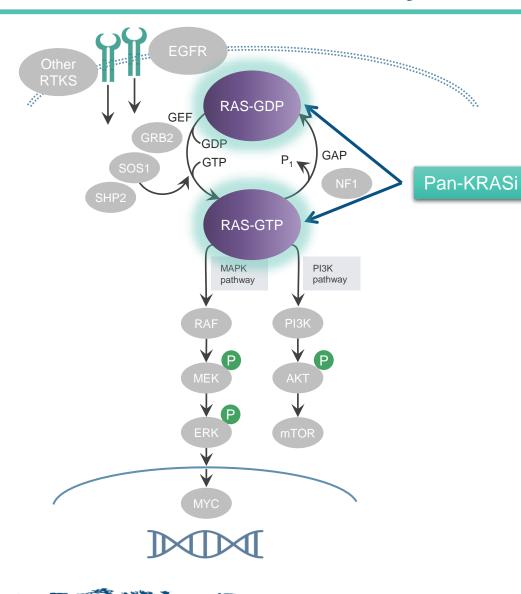
ERAS-801, a potent EGFRvIII/wt inhibitor with a $K_{p,uu}$ over 4-fold higher than approved EGFR inhibitors, was specifically designed to inhibit EGFR in GBM

Compound	Company	K _p , brain (mouse)	K _{p,uu} , brain (mouse)¹
ERAS-801	Erasca ²	8.2	1.3
osimertinib	AstraZeneca	0.99	0.29
afatinib	Boehringer Ingelheim	0.25	0.05
erlotinib	Genentech	0.06	0.13
gefitinib	AstraZeneca	0.36	0.10
dacomitinib	Pfizer	0.61	0.49

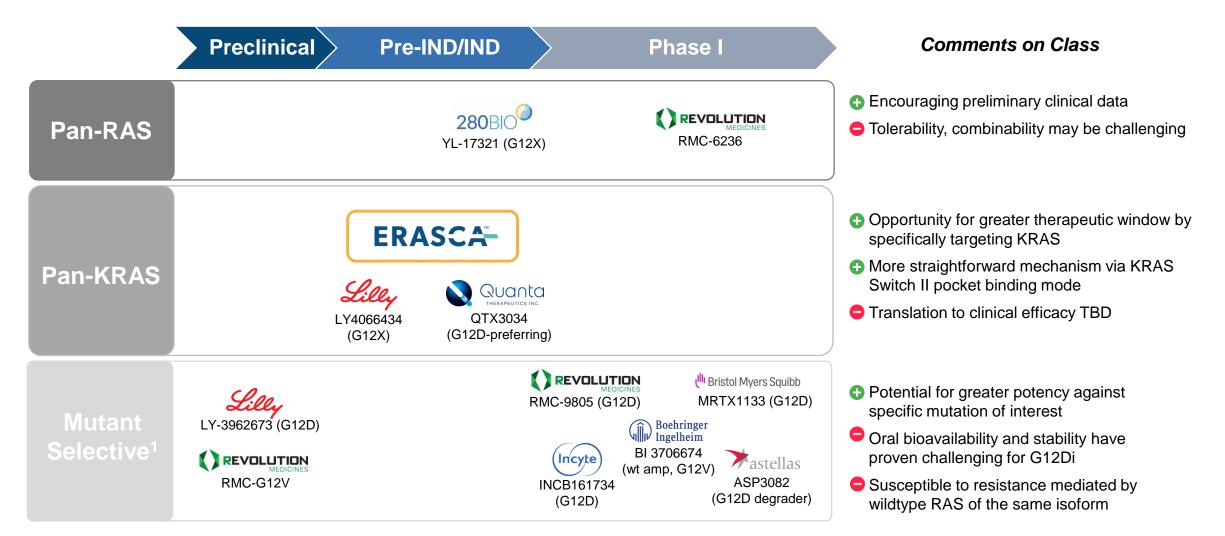

 $1 K_{p,uu}$ is a measure of the ratio of unbound brain concentration to unbound plasma concentration

2 Updated PK data generated by Erasca

Kim M, et al. Brain Distribution of a Panel of Epidermal Growth Factor Receptor Inhibitors Using Cassette Dosing in Wild-Type and Abcb1/Abcg2-Deficient Mice. Drug Metab. Dispos., 2019. PMID: 30705084



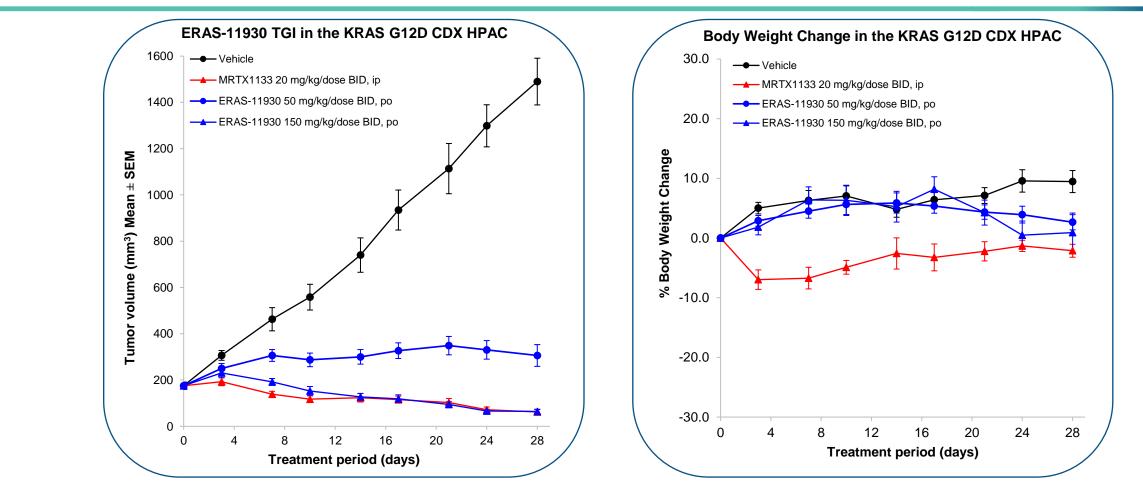
THUNDERBBOLT-1: Dose escalation cohorts



Erasca is exploring internal and external opportunities to develop a potent, KRAS-selective and orally bioavailable pan-KRAS inhibitor

- Approach inhibits KRAS by targeting the S-IIP
- Promising approach is designed to target all G12X mutations, such as G12D and G12V, as well as G13X
- Pan-KRAS drugs could provide deep and durable target inhibition with low risk of HRAS/NRAS wildtype mediated toxicity
- Pan-KRAS drugs have the potential to address a broad patient population including patients where:
 - Mutant-selective KRAS drugs are unavailable
 - Both mutant and wildtype forms of KRAS can contribute to oncogenic signaling
- Selectivity for KRAS over HRAS/NRAS is desired for improved tolerability relative to pan-RAS approach

RAS targeting landscape drives importance of identifying development candidates with first-in-class or best-in-class potential


Note: Select coopetitors shown; list is not intended to be exhaustive ¹ Mutant selective beyond KRAS G12C inhibitors

Erasca's internal pan-KRASi's showed promising in vitro potency and in vivo PK

			Erasca's Internal pa	n-KRAS Compounds		C	oopetitors' Compou	nds
Assay		ERAS-12943	ERAS-12879	ERAS-12056	ERAS-11930	MRTX1133	RMC-6236	Loxo LY-4066434
Inhibitor Class		S-IIP targeting	S-IIP targeting	S-IIP targeting	S-IIP targeting	S-IIP targeting	Molecular Glue (Ras and Cyclophilin A)	S-IIP targeting
Target(s)		Pan-KRAS	Pan-KRAS	Pan-KRAS	Pan-KRAS	KRAS G12D Selective	Pan-RAS	Pan-KRAS
KRAS G12D Kd by SPR (nM)		0.0080	0.019	0.24	0.012	~0.0002	Not relevant for S-IIP inhibitor comparisons	0.44
KRAS WT Kd by SPR (nM)		0.062	0.39	0.35	0.19	0.31	Not relevant for S-IIP inhibitor comparisons	0.26
KRAS G12D	4/24-hour pERK IC ₅₀ (nM)	1.5 / 3.6	5.4 / 6.5	6.7 / 48	4 / 20	6	0.4-3*	13
AsPC-1	5-day 3D CTG IC ₅₀ (nM)	1.9	5.4	17.7	8.2	20	1-27*	29
KRAS G12V	4-hour pERK IC ₅₀ (nM)	Queued	2.3	8.0	2.4	ND	0.4-3*	8.5
SW620	5-day 3D CTG IC ₅₀ (nM)	Queued	29	24.2	20	ND	1-27*	30
	% F D dose)	14 (40 mg/kg)	32 (50 mg/kg)	12 (50 mg/kg)	13.5 (50 mg/kg)	0.2 (10 mg/kg)	24-33 (10 mg/kg)	43 (30 mg/kg)
PK	Species	mouse	mouse	mouse	mouse	rat	mouse	mouse

Erasca's pan-KRASi showed promising in vivo activity in KRAS G12D PDAC CDX model

- MRTX1133 sets a high bar since it is the most potent S-IIP binding, G12D selective clinical compound we have observed
- ERAS-11930 showed dose dependent TGI, achieving tumor regression at the orally administered 150 mg/kg BID dose
- ERAS-11930 achieved comparable tumor regression relative to MRTX1133 at its MTD dose (20 mg/kg BID, IP)
- Mouse mortality observed when MRTX1133 was administered at higher doses (e.g., 30 mg/kg BID, IP)

Anticipated key milestones and clinical trial readouts

Program Mechanism	Trial Name Indication (Combo partner if applicable)	Anticipated Milestone
Naporafenib	SEACRAFT-1 RAS Q61X Solid Tumors (+ trametinib)	 Q2 2024 – Q4 2024: Ph 1b combination data¹
Pan-RAF inhibitor	SEACRAFT-2 NRASm Melanoma (+ trametinib)	 H1 2024: Ph 3 pivotal trial initiation 2025: Ph 3 stage 1 randomized dose optimization data¹
ERAS-007 ERK1/2 inhibitor	HERKULES-3 EC-naïve BRAFm CRC (+ encorafenib and cetuximab)	H1 2024: Ph 1b combination data ¹
ERAS-801 CNS-penetrant EGFR inhibitor	THUNDERBBOLT-1 Glioblastoma	 2024: Ph 1 monotherapy data¹

¹ Data to include safety, pharmacokinetics (PK), and efficacy at relevant dose(s) in relevant population(s) of interest

EXPERIENCED TEAM WITH TRACK RECORD OF SERIAL SUCCESSES

Seasoned drug developers who have advanced multiple programs from discovery to IND to global approvals

WORLD-CLASS SCIENTIFIC ADVISORY BOARD

Includes leading pioneers in: KRAS (Shokat, UCSF), SHP2 (Blacklow, HMS), ERK (Corcoran, MGH), RAS/MAPK pathway (Rodriguez-Viciana, UCL; Cichowski, HMS), precision oncology (Demetri, DFCI), and biopharma (Varney, Genentech)

BROAD PORTFOLIO TO ERASE CANCER

We have built one of the deepest pipelines in the industry to comprehensively shut down the RAS/MAPK pathway, with the potential to address unmet needs in over 5 million patients globally

THREE CLINICAL-STAGE COMPOUNDS

Differentiated profiles including naporafenib, a Phase 3-ready pan-RAF inhibitor for NRASm melanoma and Q61X tissue agnostic solid tumors, ERAS-007 ERK inhibitor, and ERAS-801, a CNS-penetrant EGFR inhibitor for GBM

MULTIPLE POTENTIAL NEAR-TERM AND LONG-TERM VALUE DRIVERS

Focused clinical development plan with multiple clinical readouts in 2024 and beyond and a strong research engine to drive first-in-class or best-in-class compounds into the clinic

ERASCA

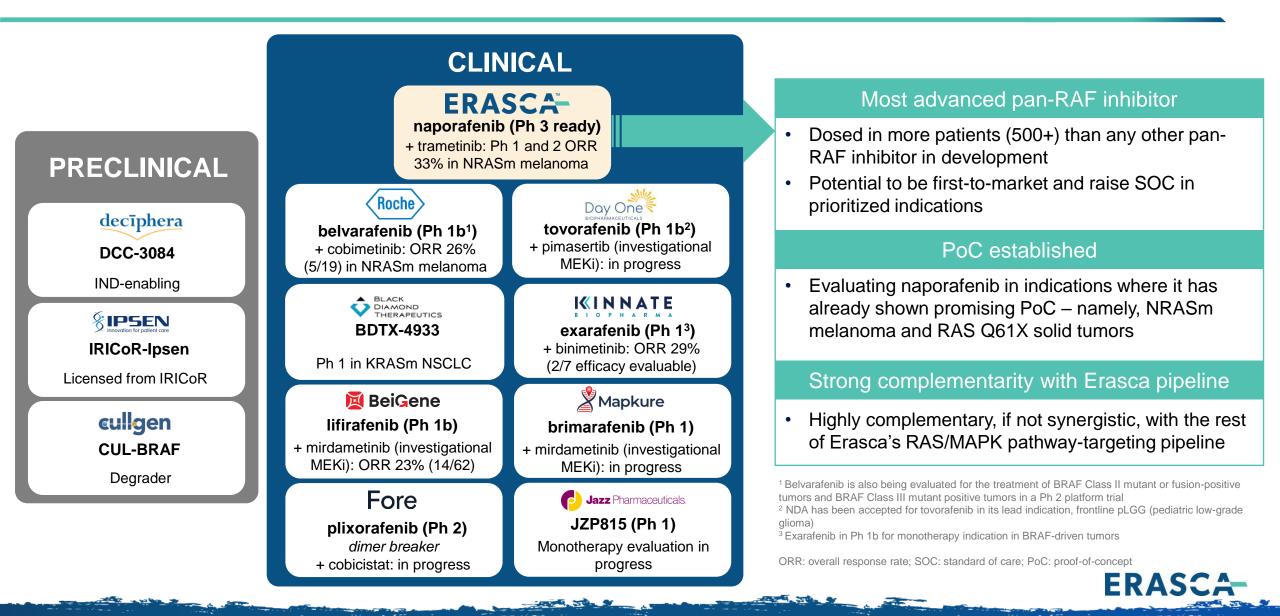
Thank You!

~5.4m lives at stake annually worldwide with RAS/MAPK pathway alterations; 70+% of unmet needs are "blue oceans" with no approved targeted therapies

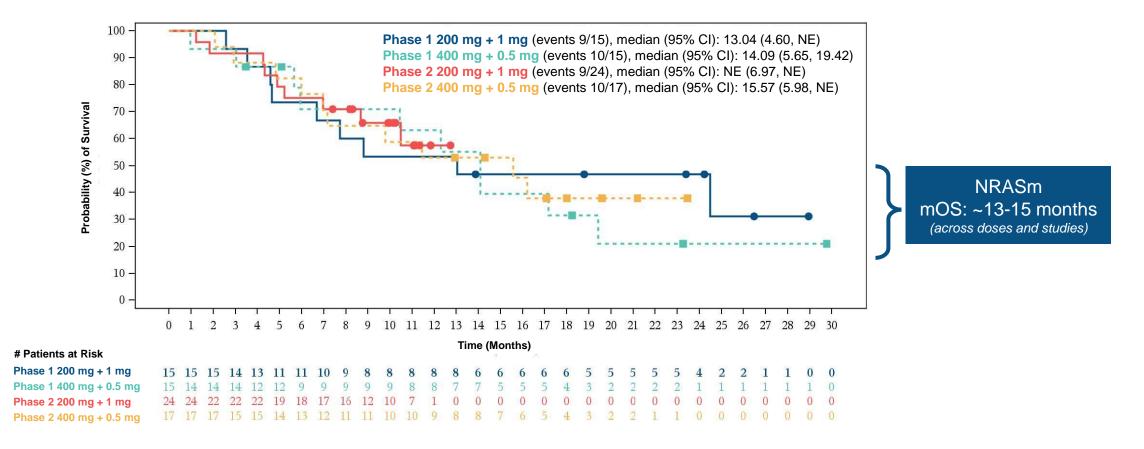
Alterations	GBM	HNSCC	NSCLC	CRC	Melanoma	PDAC	Other solid tumors	US	EU	ROW	Global
EGFR*	125	513	184	338	-	-	-	74	209	876	1,159
NF1	25	58	98	34	33	1.9	434	75	158	451	684
KRAS G12C	-	2.8	240	57	-	5.1	45	36	82	232	349
KRAS G12D	0.2	4.7	68	238	0.5	178	201	65	171	455	691
N/H/KRAS Q61X	0.4	23	35	80	69	32	155	51	105	239	394
Other K/N/HRAS	0.6	40	168	457	6	211	344	114	297	817	1,228
BRAF V600E/K	2.0	1.9	23	180	93	1.4	158	63	127	271	461
BRAF Class 2/3	0.5	4.7	29	24	7.9	0.5	86	17	38	98	153
Other BRAF	-	-	3.9	-	1.9	0.3	0.5	0.7	1.0	4.9	6.6
MEK	0.2	1.9	12	8.8	4.6	0.2	22	5.2	11	33	50
Co-occurring activating MAPK pathway alterations**	1.4	10	62	59	37	7.1	84	32	68	160	261
US	12	29	93	114	77	51	153	533			
EU	34	76	194	398	116	124	324		1,267		
Rest of World	109	555	635	964	60	264	1,053			3,636	
Global	155	660	923	1,476	253	438	1,530				5,436

New cases estimated worldwide per annum (thousands; numbers may not add up due to rounding)

Blue ocean opportunities Red ocean opportunities

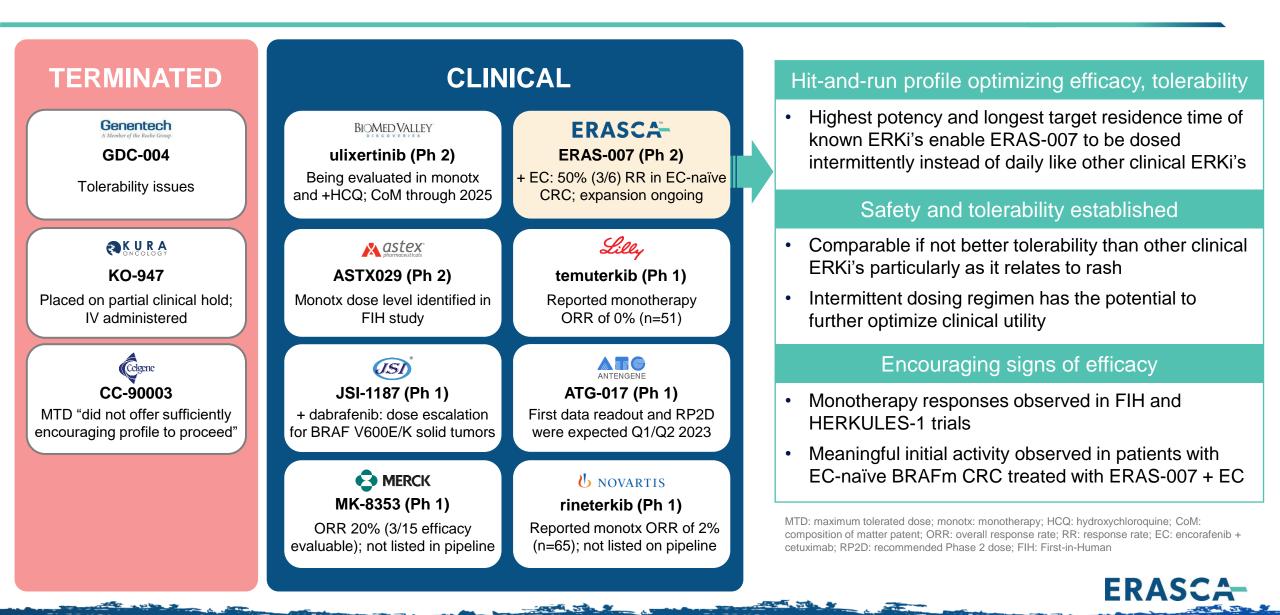

* Post-Osimertinib resistant population shown for EGFRm NSCLC except for SCLC transformation

** Co-occurring activating MAPK pathway alterations exclude EGFR overexpression


Source: SEER database (2020), ECIS database (2020), GLOBOCAN database (2020), The AACR Project GENIE Consortium version 8.1 (2020), TCGA Research Network: https://www.cancer.gov/tcga, Tyner JW et al. (2020), PMID: 30333627, Brenner CW et al (2013) PMID: 24120142, Chen J et al. (2020) PMID: 32015526, and Ostrom QT, et al. (2020) PMID: 33123732

Naporafenib: Potential first-in-class pan-RAF inhibitor

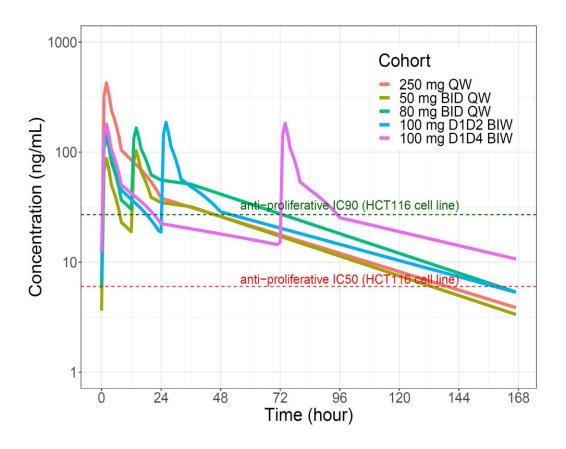
Napo + tram OS data showed high consistency across studies and doses


Reproducibility of these results across studies and doses increases our confidence in the mOS observations

mOS: median overall survival

Differences exist between trial designs and subject characteristics and caution should be exercised when comparing data across trials.

ERAS-007: Potential best-in-class ERK1/2 inhibitor in a field marked by attrition

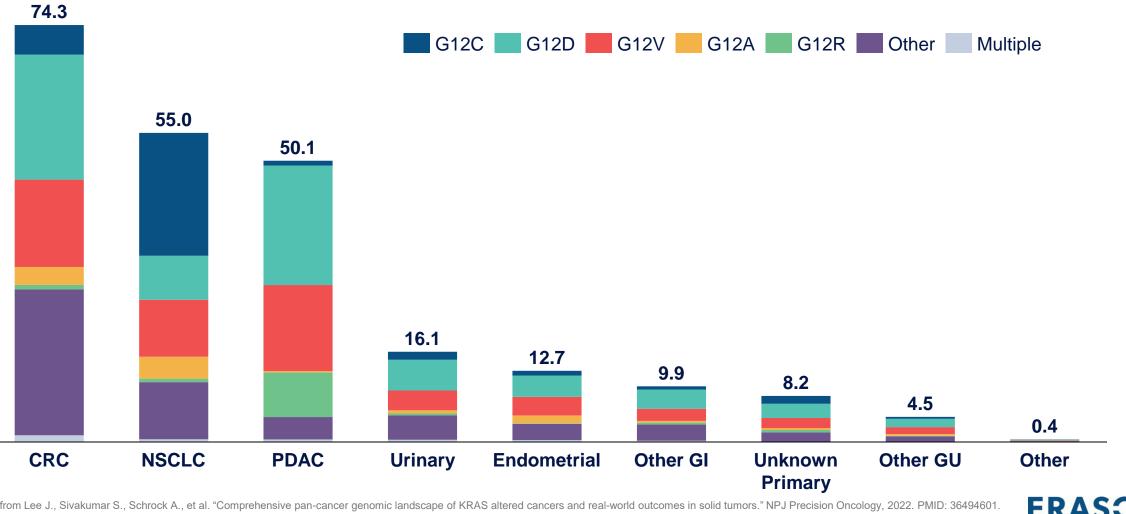


ERAS-007 blocked the MAPK feedback reactivation observed with MEK or other ERK plus BRAF inhibitor combinations

BRAF V600E CRC Cell Lines	MEKi combination	ERKi combinations			
	Binimetinib 1 μM + Encorafenib 0.1 μM	ERAS-007 0.1 μM + Encorafenib 0.1 μM	LY3214996 1 μM + Encorafenib 0.1 μM	Ravoxertinib 1 μM + Encorafenib 0.1 μM	
RKO	0 4 24 48 72h P-RSK P-ERK GAPDH	0 4 24 48 72h	0 4 24 48 72h P-RSK P-ERK GAPDH	0 4 24 48 72h	
HT29	0 4 24 48 72h P-RSK P-ERK GAPDH	0 4 24 48 72h	0 4 24 48 72h P-RSK GAPDH	0 4 24 48 72h	
MAPK Feedback	REACTIVATION	NO REACTIVATION	REACTIVATION	REACTIVATION	

Source: Unpublished data

Phase 1 PK data showed QW is preferable to QD dosing; Simulations suggest BID-QW dosing may improve PK/PD profiles and combinability even more



Dosing Regimen	C _{max} , ng/mL	C _{min} , ng/mL	T>IC90	T <ic50< th=""></ic50<>
250 mg QW	425	3	~2/7	~1/7
50 mg BID-QW	103	3	~2/7	~1/7
80 mg BID-QW	165	5	~3/7	~0.5/7
100 mg D1D2 BIW	186	5	~2/7	~0.5/7
100 mg D1D4 BIW	183	11	~2/7	0

GOAL is to maximize the time above IC90 to improve cancer cell killing, while maintaining C_{min} near or below IC50 to give normal cells a treatment break (i.e., extend time below IC50)

~230k patients are diagnosed annually in the US with solid tumors harboring **KRAS** mutations

Adapted from Lee J., Sivakumar S., Schrock A., et al. "Comprehensive pan-cancer genomic landscape of KRAS altered cancers and real-world outcomes in solid tumors." NPJ Precision Oncology, 2022. PMID: 36494601

