ERASCA-

On a Journey to Erase Cancer

Erasca Investor Update May 2024

Disclaimer: Forward Looking Statements & Market Data

We caution you that this presentation contains forward-looking statements. All statements other than statements of historical facts contained in this presentation, including statements regarding our future results of operations and financial position, business strategy, research and development plans, the anticipated timing (including the timing of initiation and the timing of data readouts), costs, design and conduct of our ongoing and planned preclinical studies and clinical trials for our product candidates, the potential therapeutic benefits of our product candidates, the potential benefits from our current or future arrangements with third parties, including the anticipated benefits of the license agreements with Medshine Discovery Inc. and Joyo Pharmatech Co., Ltd., the timing and likelihood of success of our plans and objectives, the impact of the deprioritization of certain programs, and future results of anticipated product development efforts, are forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "contemplates," "believes," "estimates," "predicts," "potential" or "continue" or the negative of these terms or other similar expressions. The inclusion of forward-looking statements should not be regarded as a representation by us that any of our plans will be achieved. Actual results may differ from those set forth in this presentation due to the risks and uncertainties inherent in our business, including, without limitation: our approach to the discovery and development of product candidates based on our singular focus on shutting down the RAS/MAPK pathway, a novel and unproven approach; our assumptions about ERAS-0015 or ERAS-4001 development potential are based in large part on the preclinical data generated by the licensors and we may observe materially and adversely different results as we conduct our planned studies; we only have two product candidates in clinical development and all of our other development efforts are in the preclinical or development stage; our assumptions around which programs may have a higher probability of success may not be accurate, and we may expend our limited resources to pursue a particular product candidate and/or indication and fail to capitalize on product candidates or indications with greater development or commercial potential; potential delays in the commencement, enrollment, data readout, and completion of clinical trials and preclinical studies; our dependence on third parties in connection with manufacturing, research, and preclinical and clinical testing; unexpected adverse side effects or inadequate efficacy of our product candidates that may limit their development, regulatory approval, and/or commercialization, or may result in recalls or product liability claims; unfavorable results from preclinical studies or clinical trials; results from preclinical studies or early clinical trials not necessarily being predictive of future results; our planned SEACRAFT trials may not support the registration of naporafenib; the inability to realize any benefits from our current licenses, acquisitions, or collaborations, and any future licenses, acquisitions, or collaborations, and our ability to fulfill our obligations under such arrangements; regulatory developments in the United States and foreign countries; later developments with the FDA or EU health authorities may be inconsistent with the feedback received to date regarding our development plans and trial designs; our ability to obtain and maintain intellectual property protection for our product candidates and maintain our rights under intellectual property licenses; our ability to fund our operating plans with our current cash, cash equivalents, and marketable securities; and other risks described in our prior filings with the Securities and Exchange Commission (SEC), including under the heading "Risk Factors" in our annual report on Form 10-K for the year ended December 31, 2023, and any subsequent filings with the SEC. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof, and we undertake no obligation to update such statements to reflect events that occur or circumstances that exist after the date hereof. All forward-looking statements are qualified in their entirety by this cautionary statement, which is made under the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and growth and other data about our industry. This data involves a number of assumptions, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions, and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk. These and other factors could cause results to differ materially from those expressed in the estimates made by the independent parties and by us.

Vision to one day erase cancer¹ in at least 100,000 patients annually as a leading global oncology company

Experienced leadership team and SAB with track record of serial successes

- Founded by Jonathan Lim, MD & Kevan Shokat, PhD around disruptive idea to target RAS
- World class scientific advisory board of leading pioneers in RAS/MAPK pathway
- Team with deep experience in efficient planning and execution of global clinical trials

Industry leading pipeline focused on shutting down the RAS/MAPK pathway

 Naporafenib pan-RAFi with first-in-class (FIC) potential and Fast Track Designation for NRASm melanoma & FIC potential in RAS Q61X solid tumors + other RAS/MAPK targeting agents

: ERAS-0015 Pan-RAS molecular glue with BIC potential in RASm solid tumors

• ERAS-4001 Pan-KRASi with FIC potential in KRASm solid tumors

Strong financial position with high quality investor base and industry visibility

• \$334M in cash, cash equivalents, and marketable securities²; not including equity financing announced on 5/16/2024

• One of Fierce Biotech's 2021 "Fierce 15" most promising biotechnology companies

¹ Number of patients alive and free of cancer or free from cancer progression 2 yrs after starting an Erasca regimen, as measured by disease-free survival (adjuvant setting) and progression-free survival (metastatic setting) ² Unaudited, as of March 31, 2024 (includes \$43,7m net proceeds from equity financing announced on 3/27/2024)

CNS = central nervous system

ERASCA

Erasca Investor Update Agenda

RAS-Targeting Franchise

Our singular focus is on the RAS/MAPK pathway

KRAS G12C INHIBITORS

Compelling but challenges remain

Susceptible to treatment resistance

Emerging clinical data suggest tumors often mount resistance to mutant-specific inhibitors^{1,2}

PAN-(K)RAS APPROACHES

Designed to address current limitations

Expands patient population (K)RAS multi-allele targeting

Less likely to develop treatment resistance

Blocks WT RAS isoform activation

Prevents on-target RAS mutations or re-activation

1 Awad et al. NEJM 2021 2 Li et al. JCO 2022

RAS targeting landscape drives importance of identifying development candidates with first-in-class or best-in-class potential

Comments on Class

- Encouraging preliminary clinical data
- Complementary combination of GTP + GDP state inhibition to address pERK rebound
- Tolerability, combinability may be challenging
- Opportunity for greater therapeutic window by specifically targeting KRAS
- Over the straightforward mechanism via KRAS Switch II pocket binding mode
- Translation to clinical efficacy TBD
- Potential for greater potency against specific mutation of interest and wt-sparing
- Oral bioavailability has proven challenging
- Susceptible to resistance mediated by wildtype RAS of the same isoform

Note: Select coopetitors shown; list is not intended to be exhaustive 1 Mutant selective beyond KRAS G12C inhibitors

RAS targeting landscape drives importance of identifying development candidates with first-in-class or best-in-class potential

Comments on Class

- Encouraging preliminary clinical data
- Complementary combination of GTP + GDP state inhibition to address pERK rebound
- Tolerability, combinability may be challenging
- Opportunity for greater therapeutic window by specifically targeting KRAS
- More straightforward mechanism via KRAS Switch II pocket binding mode
- Translation to clinical efficacy TBD
- Potential for greater potency against specific mutation of interest and wt-sparing
- Oral bioavailability has proven challenging for G12Di
- Susceptible to resistance mediated by wildtype RAS of the same isoform

Note: Select coopetitors shown; list is not intended to be exhaustive

1 Mutant selective beyond KRAS G12C inhibitors

2 Select molecules from internal ERAS-4 program identified as backup for ERAS-4001

Ideal RAS targeting molecules integrate three key attributes

- May enable **lower clinically active dose** which could translate to:
 - Lower risk of solubility-limited absorption and exposure plateau observed with another pan-RAS MG in development
 - Better GI tolerability profile due to lower drug load
 - Improved therapeutic window for any potential off-target toxicities
- KRAS G12Ci class has demonstrated how higher potency can translate into improved clinical activity

ERAS-0015 and ERAS-4001 exhibit competitive profiles that exceed our TPP

	Preclinical	(in vitro and in vivo) Potency ¹	OBA ²	IP
ERAS-0015 Pan-RAS Molecular Glue	KRAS G12D: $0.2 - 13.3 \text{ nM}$ KRAS G12V: $0.4 - 2.5 \text{ nM}$ KRAS G12C: $0.8 - 1.4 \text{ nM}$ KRAS G12X: $4.1 - 7.4 \text{ nM}$ KRAS G13D: $2.8 - 5.5 \text{ nM}$ KRAS WT: $4.1 - 13.8 \text{ nM}$ H/NRAS WT:Active ³	 KRAS G12D: Tumor regression in PK-59 CDX model at 0.3 mpk PO QD KRAS G12V: Tumor regression in NCI-H727 CDX model at 1 mpk PO QD KRAS G12R: Tumor regression in PSN1 CDX model at 5 mpk PO QD 	Mouse: 48% Rat: 38% Dog: 22% Monkey: 17%	IP (composition of matter, methods of use, and methods of making licensed compounds, incl. the current DC) has potential coverage through 2043 ⁴
ERAS-4001 Pan-KRAS Inhibitor	KRAS G12D: $1.0 - 2.6 \text{ nM}$ KRAS G12V: $0.7 - 9.1 \text{ nM}$ KRAS G12C: $1.1 - 4.5 \text{ nM}$ KRAS G12X: $6.5 - 37.7 \text{ nM}$ KRAS G13D: $5.8 - 56.0 \text{ nM}$ KRAS WT: $3.6 - 10.8 \text{ nM}$ H/NRAS WT:No activity	KRAS G12D: Tumor regression in Panc04.03, PK-59, and LU-01-1381 CDX/PDX models at 30 – 100 mpk PO BID; <u>combo with anti-PD-1</u> <u>achieved complete disappearance of tumors in</u> <u>all mice (7/7) on D31</u> at 100 mpk PO BID KRAS G12V: Tumor regression in RKN and NCI-H727 CDX models at 30 – 300 mpk PO BID	Mouse: 27% Rat: 5 – 27% (variable PK in rat) Dog: 16%	IP (composition of matter, methods of use, and methods of making licensed compounds, incl. the current DC) has potential coverage through 2043 ⁴
Potential BIC P ~5x – 10x grea properties a (vs. curre	an-RAS MG for RASm solid tumors ater potency as well as favorable AI nd PK performance in animal speci ent Pan-RAS MG in development)	Potential FIC/BIC Pan-KRAS or "KRAS-sel DME H/NRAS WT, predicted to provide greater t Pan-RAS MG) for KRASm solid tumors a activation to prevent resistance (vs. mutar	ective" SMi that spares herapeutic window (vs. and address KRASwt ht-selective inhibitors)	KRAS-selective SM + Pan-RAS MG "RASKlamp" combo could uniquely shut down MAPK signaling in KRASm solid tumors
TPP: target product prof	ile; OBA: oral bioavailability; IP: intellectual property; ed by CTG 2D and 3D-cell proliferation assay ICros	FIC: first-in-class; BIC: best-in-class; WT: wildtype; SMi: small molecule inhibitor; M	G: molecular glue; DC: development ca	Andidate FRASCA

ERAS-0015 and ERAS-4001 exhibit competitive profiles that exceed our TPP

TPP = target product profile; BIC: best-in-class; FIC: first-in-class; MG: molecular glue; SM: small molecule; ADME: absorption, distribution, metabolism, and excretion; PK: pharmacokinetic

Compound	ka (1/[S*M])	kd (1/s)	KD(M) CYPA
ERAS-0015	3.85E+05	0.017	4.52E-08
RMC-6236	1.19E+05	0.023	1.94E-07

Stronger binding to cyclophilin A (CYPA) enables more potent RAS inhibition

ERAS-0015 demonstrated significantly more potent inhibition of cellular proliferation across KRAS mutant cell lines vs. RMC-6236

Mutation	Tumor type	Cell line	ERAS-0015 cell growth inhibition (nM)	RMC-6236 cell growth inhibition (nM)
KRAS G12C	NSCLC	H358 (adagrasib-resistant)	0.8	3.6
	NSCLC	LU99	1.4	5.4
	NSCLC	A-427	13.3	59.2
	CRC	SW620	0.2	1.3
	CRC	GP2d	0.9	4.6
	PDAC	AsPc-1	2.0	26.7
KRAS GIZD	PDAC	HPAC	4.8	15.5
	PDAC	PK-59	10.7	10.7
	PDAC	KP-4	5.0	19.7
	PDAC	Panc 04.03	5.7	26.4
	Lung Cancer	NCI-H727	0.4	1.7
	Lung Cancer	NCI-H441	1.4	16.7
KRAS G12V	CRC	SW480	0.8	6.8
	PDAC	CAPAN-1	2.5	7.1
	Ovarian leiomyosarcoma	RKN	0.7	1.6
KRAS G12R	PDAC	PSN-1	5.3	17.1
KRAS G12S	NSCLC	A-549	4.1	38.3
KRAS Q61R	PDAC	Panc 02.13	7.4	44.3
	CRC	LoVo	2.8	1.5
KRAS G13D	CRC	HCT-116	5.5	26.2
KRAS WT Amplified	Gastric	MKN-1	13.8	55.8
EGFR L858R / T790M	NSCLC	H1975	6.5	11.4
MET amplified	NSCLC	EBC-1	4.4	16.9
BRAF V600E	Melanoma	A375	>6,000	>6,000

Sub-nM to nM potency against multiple KRAS wildtype and mutant cell lines and RTK altered cell lines

RTK = receptor tyrosine kinas

ERAS-0015 showed 10x higher potency than RMC-6236, achieving tumor regression in doses as low as 0.1 mg/kg p.o. QD in the KRAS G12D PK-59 CDX model

- ERAS-0015 achieved comparable tumor regression to RMC-6236 in this model at 1/10th of the dose
- No dose reductions or holidays and no body weight loss for all doses of ERAS-0015

ERAS-0015 demonstrated preferential distribution and long tumor tissue residence time vs. RMC-6236 in PK-59, favorable attributes that support its enhanced antitumor activity

ERASCA

ERAS-0015 showed 10x higher potency than RMC-6236, achieving tumor regression at 1 mg/kg p.o. QD in ongoing study in the insensitive KRAS G12V CDX model NCI-H727

- Up to day 15 data shown in an ongoing TGI study
- ERAS-0015 was well tolerated at all doses

ERASCA

p.o.: orally administered; QD: once daily; CDX: cell line-derived xenograft; TGI: tumor growth inhibition

ERAS-0015 + docetaxel showed combination benefit and tolerability in the insensitive KRAS G12V NSCLC CDX NCI-H727 (ongoing study)

- Up to day 15 data shown in an ongoing TGI study
- ERAS-0015 was well tolerated in combination with docetaxel

p.o.: orally administered; i.p. intraperitoneal; QD: once daily; QW: once weekly; CDX: cell line-derived xenograft; TGI: tumor growth inhibition

ERAS-0015 achieved comparable tumor regression at 3 mg/kg p.o. QD to RMC-6236 at 10 – 25 mg/kg p.o. QD in the KRAS G12V CDX SW620

• No dose reductions, holidays, or body weight loss

ERAS-0015 achieved tumor regression at 5 mg/kg p.o. QD in the KRAS G12R PSN-1 CDX model

• No dose reductions or holidays and body weight loss < 1% for ERAS-0015 at 5 mg/kg p.o. QD

ERAS-0015 achieved comparable TGI to RMC-6236 at 1/10th the dose in the KRAS G12R CDX PSN-1

• No dose reductions or holidays and body weight loss < 2% for ERAS-0015

ERASCA

ERAS-0015 demonstrated preferential distribution and long tumor tissue residence time vs. RMC-6236 in PSN-1, favorable attributes that support its enhanced antitumor activity

ERASCA

ERAS-0015 showed compelling combination benefit with anti-PD-1 therapy in the syngeneic KRAS G12D model KPC

- ERAS-0015 in combination with anti-PD-1 therapy resulted in complete response in 7 out of 7 treated mice on day 31
- ERAS-0015 as a monotherapy and in combination with an anti-PD-1 was well tolerated
- Tumor formation was not observed up to 24 days after KPC rechallenge

p.o.: orally administered; BIW: twice a week; BID: twice a day; QD: once daily; CDX: cell line-derived xenograft; TGI: tumor growth inhibition; BWC: body weight change

ERAS-0015 showed promising IV and oral PK in mouse, rat, dog, and monkey

		Mouse		Rat		Dog		Monkey	
		ERAS-0015	RMC-6236	ERAS-0015	RMC-6236	ERAS-0015	RMC-6236	ERAS-0015	RMC-6236
	Dose (mpk)	1	1	1	1	1	1	1	No Data
	T _{1/2} (h)	5.0	1.7	5.7	1.5	24.5	7.6	15.2	No Data
IV	Vd _{ss} (L/kg)	5.3	1.9	1.9	1.9	3.8	3.7	1.8	No Data
	CI (mL/Kg/min)	12.8	15.6	4.6	19.2	1.9	7.9	1.6	No Data
	AUC _{0-last} (nM*h)	1,337	1,274	4,125	1,123	7,910	2,630	11,479	No Data
	Dose (mpk)	10	10	10	10	5	5	5	No Data
	C _{max} (nM)	745	1,443	1,620	339	472	377	723	No Data
Oral	T _{1/2} (h)	6.3	1	6.1	2.5	22.4	7.8	12.3	No Data
	AUC _{0-last}	6,786	4,467	15,213	1,427	8,720	2,755	10,004	No Data
	Bioavailability (F %)	48%	33%	38%	14%	22%	21%	17%	No Data

ERAS-0015 demonstrated good overall ADME properties in vitro

Assay	Value
Kinetic Solubility (FaSSIF, FeSSIF) (µg/mL)	127, 156
MDR1(A/B,B/A ER)	0.3, 1.7, 5.5
PPB (% Unbound)	0.4 (h), 2.1 (c), 0.4 (d), 0.2 (r), 0.6 (m)
WBS T _{1/2} (min)	>289 (h), >289 (d), >289 (r), >289 (m)
BPR, K _{B/P}	3.5 (h), 14.2 (c), 1.7 (d), 3.0 (r), 5.3 (m)
MMS(CL _{int} (liver)(mL/min/kg)	87 (h), 287 (c), 23 (d), 31 (r), 197 (m)
HMS(CL _{int} (liver)(mL/min/kg)	51 (h), 272 (c), 73 (d), 104 (r), 408 (m)
CYP450 IC50 (µM) 1A2 / 2C9 / 2C19 / 2D6 / 3A4	50, 1.3, 25, 50, 4.4
hERG (IC ₅₀ µM) Manual patch	> 10

TPP = target product profile; BIC: best-in-class; FIC: first-in-class; MG: molecular glue; SM: small molecule; ADME: absorption, distribution, metabolism, and excretion; PK: pharmacokinetic

Target	KD (nM)	t _{1/2} (s)
KRAS G12D	0.0006	273,079
KRAS G12V	0.0069	30,159
KRAS G12C	0.016	7,724
KRAS WT	0.058	3,409
HRAS WT	117	18.1
NRAS WT	2,660	1.2

SPR-based kinetic biophysical binding characterization of ERAS-4001

ERAS-4001 potently and selectivity inhibited cellular viability in KRAS G12X, G13D and WT cell lines

KRAS Mutation	Tumor type	Cell line	ERAS-4001 cell growth inhibition (nM)
	Pancreatic	AsPC-1	1.8
	Pancreatic	Panc 04.03	1.9
KRAS GIZD	Pancreatic	HPAC	1.0
	Pancreatic	PK-59	2.6
	Lung	NCI-H727	3.5
	Lung	NCI-H441	0.7
KRAS GIZV	Ovary	RKN	2.3
	Colorectal	SW620	9.1
	Lung	LU99	2.7
KRAS G12C	Pancreatic	MIA PaCa-2	1.1
	Lung	NCI-H2030	4.5
	Multiple Myeloma	RPMI-8226	6.5
KRAS GIZA	Lung	NCI-H1573	37.7
	Colorectal	LoVo	5.8
KRAS GISD	Colorectal	HCT-116	56
	Lung	NCI-H1975	10.8
	Stomach	MKN-1	3.6
KBAS Independent	Melanoma	A375	>2,000
KKAS Independent	Lung	NCI-H226	3,497

ERAS-4001 showed dose independent inhibition of pERK and TGI in the KRAS G12D CDX model Panc 04.03

- MRTX-EX5 represents an orally bioavailable pan-KRAS tool inhibitor disclosed in a Mirati patent
- ERAS-4001 was well tolerated at doses up to 300 mg/kg BID for 28 days (i.e., no dose reductions or holidays; no body weight loss or significant health observations)

p.o.: orally administered; BID: twice a day; CDX: cell line-derived xenograft; TGI: tumor growth inhibition

ERAS-4001 achieved tumor regressions in additional KRAS G12X CDX models at doses as low as 30 mg/kg BID

 ERAS-4001 was well tolerated in both studies at doses up to 300 mg/kg BID (i.e., no dose reductions or holidays; no body weight loss or significant health observations)

p.o.: orally administered; BID: twice a day; CDX: cell line-derived xenograft; TGI: tumor growth inhibition

ERAS-4001 achieved tumor regression in a pan-KRASi insensitive KRAS G12V CDX model NCI-H727

- ERAS-4001 was well tolerated at doses ranging from 10 mg/kg p.o. BID to 100 mg/kg p.o. BID (i.e., no dose holidays or mortality)
- ERAS-4001 at 300 mg/kg p.o. BID showed borderline tolerability with 4 out of 6 mice receiving continuous treatment, one mouse receiving a
 dose holiday due to body weight loss on days 16-21, and one mouse death on day 13
- Observed borderline tolerability may be model and/or study specific; ERAS-4001 at 300 mg/kg p.o. BID was well tolerated in the Panc 04.03 CDX TGI study (no dose holidays or mortality)

p.o.: orally administered; BID: twice a day; CDX: cell line-derived xenograft; TGI: tumor growth inhibition

Under MTA, Erasca reproduced the promising in vivo activity of ERAS-4001 in the KRAS G12D CDX HPAC

- ERAS-4001 achieved tumor regressions at 50 and 100 mg/kg p.o. BID doses, reproducing the in vivo activity previously observed in external studies
- ERAS-4001 was well tolerated at doses up to 100 mg/kg BID (i.e., no dose reductions or holidays; no body weight loss or significant health observations)

p.o.: orally administered; BID: twice a day; CDX: cell line-derived xenograft; TGI: tumor growth inhibitior

ERAS-4001 showed combination benefit with anti-PD-1 therapy in the syngeneic KRAS G12D model KPC

TGI of ERAS-4001 +/- anti-PD-1

Complete response rate at day 50

29% (2/7)

100% (7/7)

p.o.: orally administered; i.p. intraperitoneally; BID: twice a day; BIW: twice a week; TGI: tumor growth inhibition

0% (0/7)

ERAS-4001 showed promising PK and oral bioavailability in mouse, rat, and dog

	PK Parameter	Mouse	Rat	Dog
	Dose (mpk)	1.7	2	2.1
	C ₀ (nM)	1,722	1,083	1,669
IV	T _{1/2} (h)	1.9	3	5.8
1.	V _d (L/kg)	5.16	10.1	14.1
	CI (mL/Kg/min)	45.5	70.9	53.1
	AUC _{0-last} (nM⋅h)	938	615	827
	Dose (mpk)	30.3	30.9	15.3
	C _{max} (nM)	2,090	584	323
Oral	T _{max} (h)	1.5	4	0.5
Ordi	T _{1/2} (h)	1.5	2.3	5.4
	AUC _{0-last} (nM⋅h)	4,498	2,562	962
	Bioavailability (F %)	27	27	16

ERAS-4001 demonstrated good overall ADME properties in vitro

Assay	Value
CLogP / tPSA	3.7 / 111.6
pKa / Kinetic Solubility (pH@7.4)	9.0 / 113.0 µM
PPB (Unbound %), Human/Dog/Rat/Mice	1.3 / 1.6 / 0.8 / 1.5
HMS CL _{int} (mL/min/kg), H / D / R / M	38.8 / 212.3 / 511.6 / 830
IS9 CL _{int} (mL/min/kg), H / D / R / M	<9.6 / 12.5 / - / -
MDR1 A to B (P_{app} (10 ⁻⁶ cm/s) /Efflux Ratio	0.9 / 26.7
K _{B/P} H / D / M (blood/plasma)	0.6 / 0.7 / 0.9
CYP450 IC50 (µM) 1A2 / 2C9 / 2C19 / 2D6 / 3A4	>50 / 37.7 / 24.4 / 9.9 / 6.6
hERG IC ₅₀ (μ M) / predicted hERG safety margin	~1 / 230x-740x
Mini-Ames	Negative

KRAS alterations found most commonly in CRC, PDAC and NSCLC

Adapted from Lee J., Sivakumar S., Schrock A., et al. "Comprehensive pan-cancer genomic landscape of KRAS altered cancers and real-world outcomes in solid tumors." NPJ Precision Oncology, 2022. PMID: 36494601. CRC: colorectal cancer; NSCLC: non-small cell lung cancer; PDAC: pancreatic ductal adenocarcinoma; GI: gastrointestinal; GU: genitourinary

Innovative CDP designed to maximize efficiency and minimize clinical and regulatory risk

Patients

 Focus on tumor types with largest number of potential patients to allow efficient clinical trial enrollment and potential for maximum patient benefit 02

Early combo assessment

 Parallel pursuit of monotherapy proof-ofconcept & combination dose finding to expedite development

Data-driven

- Efficiently use clinical data to prioritize mono and combo approaches
- De-risk subsequent trials by using RWD to understand benchmarks, contribution of components

Portfolio

 Capitalize on unique portfolio of molecules with complementary RAS inhibitory mechanisms (S-IIP binding vs. MG) and target profiles (pan-KRAS vs. pan-RAS)

CDP: clinical development plan; RWD: real world data; MG: molecular glue; S-IIP: Switch-II pocket

- Licensor: Joyo Pharmatech Co., Ltd.
- License scope: Exclusive license covering ERAS-0015 (pan-RAS) and any other pan-RAS molecule covered by the licensed patents
- Field: All fields of use
- **Territory:** Worldwide, excluding China, Hong Kong, and Macau; subject to "China buyout" described below
- China buyout: At any time before Ph 2 FPD or NDA submission, Erasca can convert the Territory to Worldwide at our sole election with a one-time payment; payment amount depends on when this option is exercised
- IP: Potential coverage of composition of matter, methods of use, and methods of making licensed compounds, incl. the current DC, through 2043

Financial terms	Amount (\$m, except royalties)
Total upfront	12.5
Total development milestones	Up to 17.5
Total regulatory milestones ¹	Up to 34
Total commercial milestones	Up to 125
First commercial sale	0
Tiered sales based milestones ²	Up to 125
Total deal value before royalties and China buyout	Up to 189
China buyout and milestones	Up to 56 or 156
Royalties	Tiered (low to mid) single-digit percent

¹ Covers multiple indications in US, EU, and JP
 ² Milestones based on net sales tiers up to and including \$2Bn

FPD: first patient dosing; NDA: new drug application; DC: development candidate

- Licensor: Medshine Discovery, Inc.
- License scope: Exclusive license covering ERAS-4001 (pan-KRAS) and any other pan-KRAS molecule covered by the licensed patents
- **Field:** All fields of use
- **Territory:** Worldwide
- **IP:** Potential coverage of composition of matter, methods of use, and methods of making licensed compounds, incl. the current DC, through 2043

Financial terms	Amount (\$m, except royalties)
Total upfront	10
Total development milestones	Up to 10
Total regulatory milestones ¹	Up to 20
Total commercial milestones	Up to 130
First commercial sale	0
Tiered sales based milestones ²	Up to 130
Total deal value before royalties	Up to 170
Royalties	Low single-digit percent

¹ Covers US, EU, and JP or CHN
 ² Milestones based on net sales tiers up to and including \$3Bn DC: development candidate

Corporate Update

Program/ Company	Target	Modality	Indication	Discovery	IND-enabling	Phase 1	Phase 2	Phase 3	Worldwide Rights
Naporafenib	BRAF/CRAF	68	Pan-RAS Q61X tissue agnostic	SEAC <u>RAF</u> T-1					ERASCA
			NRASm melanoma	SEAC <u>RAF</u> T-2	(planned)				
ERAS-007	ERK1/2	8	BRAF V600E CRC	H <u>ERK</u> ULES-3					ERASCA
ERAS-801	EGFR	8	EGFR-altered GBM	THUND <u>ERBB</u> (DLT-1				ERASCA
ERAS-4	Pan-KRAS	8	KRASm solid tumors						ERASCA
ERAS-12	EGFR D2/D3		EGFR & RAS/MAPK altered tumors						ERASCA

Small molecule I arge molecule

Note: Via Erasca Ventures, we made an equity investment into Affini-T Therapeutics, which is developing TCR T-cell therapies against KRAS G12V, KRAS G12D, and KRAS G12C.

Data-driven prioritization refocuses efforts and resources on opportunities targeting the most significant unmet needs, with highest POS for patients

Refocusing Efforts	Action	Rationale		
HERKULES-3: ERAS-007 + EC in EC-naïve CRC segment	Deprioritized	Clinical efficacy data do not support continued evaluation of this combination in this indication		
THUNDERBBOLT-1: ERAS-801 in rGBM	Paused Erasca sponsored trials	Desire to focus internal resources on naporafenib and RAS franchise; exploring advancement via ISTs		
ERAS-4: Pan-KRAS research program	Deprioritized	In-licensing of ERAS-0015, ERAS-4001; select existing molecules are included in the Pan-KRAS license as potential ERAS-4001 backups		
Workforce restructuring	~18% reduction	Prioritizing development function should enable Erasca to progress highest priority programs as quickly and efficiently as possible		

POS = probability of success; EC: encorafenib + cetuximab; CRC: colorectal cancer; rGBM: recurrent glioblastoma; IST = investigator sponsored trial;

Erasca's AURORAS and BOREALIS trials to address RAS opportunities

During any long seafaring journey, the endless sea can often disorient a person's sense of time and place. The appearance of the dawn, or aurora, provides a definitive sense of direction and a welcome signal to start the new day. At Erasca, helping patients is our guiding light. With the AURO<u>RAS</u> and BO<u>REALIS</u> studies, we hope that our potent, selective, orally bioavailable Pan-<u>RAS</u> molecular glue ERAS-0015 and Pan-K<u>RAS</u> inhibitor ERAS-4001 can provide benefit to patients with (K)RASm solid tumors.

- AURORAS-1 is expected to be the initial phase 1 trial that will assess the ERAS-0015 Pan-RAS molecular glue alone and in combination for the treatment of patients with RASm solid tumors, for which an IND is targeted for H1 2025¹
- BOREALIS-1 is expected to be the initial phase 1 trial that will assess the ERAS-4001 Pan-KRASi alone and in combination for the treatment of patients with KRASm solid tumors, for which an IND is targeted for Q1 2025

NOTE: Combination of the molecules with each other could be explored in future AURORA BOREALIS trial(s)

¹Timing of IND is subject to adjustment (could potentially move to Q3 2025) pending detailed program planning, driven predominantly by CMC timelines

Program/ Company	Target	Modality	Indication	Discovery	IND-enabling	Phase 1	Phase 2	Phase 3	Worldwide Rights
Naporafenib	BRAF/CRAF	8	Pan-RAS Q61X tissue agnostic	SEAC <u>RAF</u> T-1					ERASCA
			NRASm melanoma	SEAC <u>RAF</u> T-2 (planned)				ERASCA
ERAS-0015	RAS	8	RASm solid tumors	AURO <u>RAS</u> -1 (p	blanned)				ERASCA BIOLOGIA
ERAS-4001	KRAS	8	KRASm solid tumors	BO <u>R</u> E <u>A</u> LI <u>S</u> -1 (p	blanned)				
ERAS-12	EGFR D2/D3		EGFR & RAS/MAPK altered tumors						ERASCA

🛞 small molecule

Note: Pipeline also includes ERAS-801 brain-penetrant EGFR inhibitor for EGFR-altered GBM (for which we are concluding a Phase 1 trial and exploring advancement via investigator-sponsored trials), ERAS-007 ERK1/2 inhibitor, and ERAS-601 SHP2 inhibitor. ERAS-007 and ERAS-601 are being assessed in preclinical studies as potential combination partners with other programs in our pipeline for RAS/MAPK pathway inhibition. Via Erasca Ventures, we made an equity investment into Affini-T Therapeutics, which is developing TCR T-cell therapies against KRAS G12V, KRAS G12D, and KRAS G12C. ¹ Licensor Joyo Pharmatech, Ltd., retains rights to People's Republic of China, Hong Kong and Macau, subject to Erasca's option to convert our territory to worldwide

Anticipated key milestones and clinical trial readouts

Program Mechanism	Trial Name Indication (Combo partner if applicable)	Anticipated Milestone
Naporafenib	SEACRAFT-1 RAS Q61X Solid Tumors (+ trametinib)	 Q4 2024: Ph 1b combination data¹
Pan-RAF inhibitor	SEACRAFT-2 NRASm Melanoma (+ trametinib)	 Q2 2024: Ph 3 pivotal trial initiation 2025: Ph 3 stage 1 randomized dose optimization data¹
ERAS-0015 Pan-RAS molecular glue	AURORAS-1 RASm solid tumors	 H1 2025: IND filing² 2026: Ph 1 monotherapy data³
ERAS-4001 Pan-KRAS inhibitor	BOREALIS-1 KRASm solid tumors	 Q1 2025: IND filing 2026: Ph 1 monotherapy data³

¹ Data to include safety, pharmacokinetics (PK), and efficacy at relevant dose(s) in relevant population(s) of interest

² Timing of IND is subject to adjustment pending detailed program planning, driven predominantly by CMC timelines

³ Subject to change pending detailed program planning, but assuming target US IND filing timing is achieved, data to include safety, PK, and efficacy at relevant dose(s) in relevant population(s) of interest

ERASCA

Thank You!